General Autodiscovery of DTN Nodes

Jim Wyllie

Verizon / NASA / Ohio University

April 16, 2007

Advisors: Wesley Eddy, Shawn Ostermann, Joe Ishac
Quick DTN Overview

- Delay / Disruption Tolerant Networking
- Potentially high RTT (seconds, minutes, hours)
- Not always a direct end-to-end path (maybe never)
- Potentially high error rates
- Deep space, sensor networks, etc
- Directly below application layer
Generally lumped into three categories:

- **Ignored**
 - Assumes hosts are up (error if not)
 - Manual configuration of contact times
 - Typical for research / testing environments

- **Home-brew**
 - Added in a domain- and implementation-specific way
 - Typically has all the limitations of an ad-hoc implementation

- **Punted**
 - Assumes the lower layer can queue / figure it out
 - Can lead to bad link utilization decisions
Problems with current solutions

- No standardization on mechanisms
- Typically only supports certain underlying layers
- Security is typically non-existent
- Interoperability is virtually non-existent
Why this is hard

- Long vs short delays
- Ample vs minimal power
- Highly disruptive vs "long" uptimes

How do we generalize all of these into one protocol?
Two-layered approach

- Look at the problem in two pieces
 - Generic to all autodiscovery systems
 - Domain-specific implementation
Consists of a new block type

Has the following fields:

- **Autodiscovery Flags** — Flags about autodiscovery, contained fields
- **Autodiscovery Protocol** — Flags about the type of autodiscovery payload
- **Bundle node ID** — Reference to the node ID to which this autodiscovery refers
- **Start Time** — Start time of contact (omit for "right now")
- **End time** — End time of contact (omit for "in perpetuity")

Timestamps have seconds-based granularity
Autodiscovery Flags

- Bit 1 — Bundle contains contact time information
- Bit 2 — Bundle contains start time\(^1\)
- Bit 3 — Bundle contains end time\(^1\)
- Bits 4-7 are reserved

\(^1\)Must be clear if bit 1 is clear
Autodiscovery Protocol Field

- Determines the type of domain-specific autodiscovery data
- Gives structure to the payload data
 - 0x00 is unused
 - 0x01 defines a NASA discovery protocol
- Not present if connection times are present
How these parts work together

- Last packet in the sequence: contact time is set
- If flag is clear, flags / protocol / times must not be present
- Assuming N packets in entire Autodiscovery sequence:
 - $[0, N - 1]$ — No contact time: domain-specific discovery payload
 - N — Contact time set: start and end contact times from discovery
These packets aren’t always needed: depends on the deployment environment

<table>
<thead>
<tr>
<th>Autodiscovery Flags</th>
<th>Autodiscovery Protocol</th>
<th>Bundle EID</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0 0 1</td>
<td>0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>x 1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>
General Autodiscovery of DTN Nodes

Sample packet: connection times known

<table>
<thead>
<tr>
<th>Autodiscovery Flags</th>
<th>Bundle EID</th>
<th>End Time</th>
<th>Footer Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jim Wyllie
Advantages to such an approach

- "Separate but compatible" autodiscovery mechanisms for DTN
- Can provide standardized security against autodiscovery attacks (DoS, MITM)
- Allows domain-specific autodiscovery mechanisms
- Lower-layer independent
Potential security concerns

Deep-space scenario
- Rover spots aliens. Foreign orbiter discovered
- Satellite discovers hacker’s dish
- X.509 Certificates? Pre-shared keys?

Public-use scenario
- On a bus, discover a rogue PDA as router
- Key fingerprints a la SSH?
Potential security concerns

- 3rd party reports a host is down imminently
- Send early, send often
- Mitigated by "trusted" DTN network (X.509, PSKs)
Summary

- Standardized system for DTN autodiscovery
- General and optional domain-specific portion
- Usable across a wide variety of domains
- Discovery can be abstracted out of implementation
- Can be secured if necessary
Any questions?