
Wesley Eddy
MTI Systems, Greenbelt, Maryland

William D. Ivancic, Dennis C. Iannicca, Joseph Ishac, and Alan G. Hylton
Glenn Research Center, Cleveland, Ohio

Secure Naming and Addressing Operations
for Store, Carry and Forward Networks

NASA/TM—2014-216665

May 2014

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 443–757–5803

• Phone the NASA STI Information Desk at
 443–757–5802

• Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076–1320

Wesley Eddy
MTI Systems, Greenbelt, Maryland

William D. Ivancic, Dennis C. Iannicca, Joseph Ishac, and Alan G. Hylton
Glenn Research Center, Cleveland, Ohio

Secure Naming and Addressing Operations
for Store, Carry and Forward Networks

NASA/TM—2014-216665

May 2014

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Level of Review: This material has been technically reviewed by technical management.

Secure Naming and Addressing Operations for
Store, Carry and Forward Networks

Wesley Eddy∗, William D. Ivancic†, Dennis C. Iannicca†, Joseph Ishac†, and Alan G. Hylton†
∗MTI Systems †NASA Glenn Research Center

Abstract—This paper describes concepts for secure naming
and addressing directed at Store, Carry and Forward (SCF)
distributed applications, where disconnection and intermittent
connectivity between forwarding systems is the norm. The
paper provides a brief overview of store, carry and forward
distributed applications followed by an in depth discussion of
how to securely: create a namespace; allocate names within the
namespace; query for names known within a local processing
system or connected subnetwork; validate ownership of a given
name; authenticate data from a given name; and, encrypt data
to a given name. Critical issues such as revocation of names,
mobility and the ability to use various namespaces to secure
operations or for Quality-of-Service are also presented. Although
the concepts presented for naming and addressing have been
developed for SCF, they are directly applicable to fully connected
systems.

Index Terms—Internetworking, Mobile ad hoc networks, In-
formation Security

I. INTRODUCTION

INTERNET technology has become pervasive and is now
present in many types of devices that are deployed in

the field for use in scenarios where they do not have good
(or any) actual Internet connectivity. The devices support data
transfer during episodes of connectivity, and the applications
and protocol are configured to avoid reliance on many typical
infrastructure services (e.g. Domain Name System (DNS)).
These devices may be only intermittently connected to other
devices, and are used to support data flows where the source
and ultimate destination might never be fully connected to
one another at any time. Applications operate highly asyn-
chronously, with incalculable constraints on their communica-
tion. Often, there are intermediate relaying nodes (or “agents”)
that must “carry” the data while waiting for connectivity to
develop. The systems and applications that are of concern are
primarily operating with a much higher level of asynchrony
between the data producers, individual relays, and eventual
data consumers. We call these “Store, Carry, and Forward”
(SCF) systems to distinguish them from typical Store and
Forward (SF) systems, which generally operate over a better-
connected infrastructure [1][2].

SCF distribute applications can be thought of as an extreme
case in Mobile Ad Hoc Network (MANET) because discon-
nection and intermittent connectivity is the assumed condition
whereas in mobile ad hoc networking hop-by-hop connectivity
is generally assumed. Fig. 1 illustrates a generic SCF network
architecture, with the SCF agents (labeled “SCF”) frequently

Corresponding author: W. Ivancic (email: william.d.ivancic@nasa.gov)

Fig. 1. MANET and Store, Carry and Forward Networks

partitioned into time-varying disconnected subsets. Depending
on specifics of an individual scenario, it may be likely that
some SCF agents are permanently attached to a connected
network providing stable gateways to the other SCF agents.
However, in general, the system should be considered to
consist of a number of primarily intermittently connected SCF
agents at any point in time.

There are numerous lessons to be learned from previous
deployments of MANETs and store and forward networks
such as Delay/Disruption/Disconnection Tolerant Networking
(DTN) [3][4][5][6]. Since SF and DTN networks have no real
bounds relative to the maximum time an identified data or
control unit can exist within a routed network, SF and DTN
are really distributed applications [7]. Regardless, some of the
more critical items are:

• SCF systems are generally connected via radio networks.
Some radio systems may take far less power to listen
than to transmit, though this varies by individual link
technology. Unnecessary transmission wastes power on a
wireless system and can quickly drain a battery. The prob-
lem is compounded for devices whose entire lifetime is
determined by their battery (e.g. non-rechargeable sensor

NASA/TM—2014-216665 1

nodes). Thus, reducing the number of transmissions is
very important.

• It is highly desirable for the sender to know early in a
transmission whether or not the receiver will accept the
data, and likewise for the receiver to be able to make this
decision early within a transfer. This permits a savings
in power and optimization of network capacity usage.
For instance, in DTN experiments with large bundles, an
entire large bundle may be sent, only to be discarded due
to receiver policy for security, resource scarcity, or other
issues.

• Disconnected and intermittently connected networks are
difficult, if not impossible, to globally synchronize state
across - particularly achieving even rough global time
synchronization is a challenge. Timer based mechanisms
can be used without requiring global time synchroniza-
tion. Tight time synchronization is seldom necessary
and should be avoided in any distributed system as it
introduced a single point of failure.

• It is highly desirable for a receiving agent to determine
early within a transfer whether or not to accept the data.
Large data sets utilize significant processing and storage
resources for data that may end up being discarded due
to security, resource constraints, or other policy issues.

• It is highly desirable to have some way to establish single-
copy routes rather than flooding entire networks with
multiple copies of the same data.

• Communications and mobility is not completely random
even for ad hoc networks.

• As one moves father from the core (backbone) of the
network, nodes generally have less connectivity and ca-
pability.

A. Terminology

To aid in discussion within this document it is useful to
develop and define some terminology specific to our concepts
of SCF networks.

Container The application/user data to be trans-
ported over the network as well as a
checksum of that information (the pay-
load).

Shipping Label Metadata describing the characteristics of
a container and its forwarding require-
ments (the header).

II. NAMESPACES (NAMING AND ADDRESSING)

The conclusion goes here We draw much of our concepts
for naming and addressing from three source: “Patterns in Net-
work Architectures” [8], “A note on Inter-Network Naming,
Addressing, and Routing” [9], and “On the Naming and Bind-
ing of Network Destinations” [10]. In particular, Saltzer [10]
provides a summary of services, nodes, and attachment points
that, if strictly followed, enables: services (a.k.a. applications)
to be distributed and/or move, multi-homing of nodes, and
mobility.

1) A given service may run at one or more nodes, and may
need to move from one node to another without losing its
identity as a service.

2) A given node may be connected to one or more network
attachment points, and may need to move from one
attachment point to another without losing its identity
as a node.

3) A given pair of attachment points may be connected by
one or more paths, and those paths may need to change
with time without affecting the identity of the attachment
points. [sic]

Saltzer also points out that three sets of bindings must
be maintained and must be discovered in order to send
information between services:

• The binding between the service and the node it at which
it resides;

• The binding between the node and the network attach-
ment point (or points, if multi-homed); and,

• The path from source attachment point to destination
attachment point (routing)1.

For our discussions, we are not concerned with the bindings
of attachment points (i.e. routing). Rather, we consider two
basic forms for names: locators and identifiers.

Locators (a.k.a. addresses) are hierarchical, at least that is
highly desirable in order to aid in routing as agents need
some clue about where to send containers in order to get
“closer” even if they do not know the best direct path. For
example, to send information from 1600 Pennsylvania Avenue
NW Washington, DC to 10 Downing Street, London, England,
United Kingdom one knows that sending the information to
somewhere in the United Kingdom is getting that information
closer to the final destination. Likewise, in a tree-based hier-
archical numbering system, if information is to be transferred
from 1.2.3.4 to 1.2.100.87, sending the information towards
a grandparent node, 1.2, should be getting the information
“closer” to the destination or at least to a node that likely has
a better idea of where 1.2.100.87 is.

Identifiers are not necessarily hierarchical, and may or may
not be human readable. Identifiers should be unique and
are used to identify applications or services. Identifiers are
bound to locators and discovered via some type of directory
service. This binding may change over time. In SCF distributed
applications where disconnection is assumed to be normal,
distribution and synchronization of these directories required
for discovery must be well thought out. Directory services are
discussed further in section 11.

III. PHILOSOPHY OF MULTIPLE NAMESPACES

In the Internet, there is one namespace, Internet Protocol
(IP) addresses for routing. The World Wide Web contains
Uniform Resource Locator (URL) for high for higher-level
identifiers. The Domain Name System (DNS) directory pro-
vides a directory service for mapping computers, services, or
any resource (e.g. email, Unique Resource Locator for Web

1Whereas, here, Salzer defines routing as between attachment points, we
consider routing between source node and destination node as a node may
have multiple points of attachment i.e., multi-homing.

NASA/TM—2014-216665 2

services, etcetera) connected to the Internet. (Arguably, Inter-
net Protocol version 6 (IPv6) can support multiple namespaces
e.g. Global Unique Address (GUA) for normal routing and
ORCHID [11] for higher-layer identifiers, but this facility
has not been strongly used, nor will it be easy to, given the
way that existing software and hardware works, basically only
supporting their known subsets of existing type prefixes, and
not new prefixes). For SCF, we are proposing a system of
unlimited namespaces, which can be used to construct either
pools of application identifiers without mandated structure, or
pools of addresses with hierarchical structure. Thus, here, the
only difference between addresses and other identifiers is their
hierarchical nature.

The limitation of one namespaces, and the global visibility
of that namespace to applications, is a root cause of many
complexities and fragilities within today’s Internet architec-
ture, including within: the interdomain routing system, the
DNS, IP neighbor discovery, and other aspects. This has
led to a multitude of security issues related to not being
able to verify ownership of particular identifiers or addresses,
and not being able to authenticate the bindings between
particular identifiers and addresses. These issues have, to some
extent, been attempted to patch over with BGPSEC/SIDR [12],
DNSSEC [13], SeND [14], and other extensions, but these
have shifted the security issues to issues of increased opera-
tional and infrastructure complexity. Both of the namespaces
still have centralized (though hierarchical) allocation and man-
agement at the top (e.g. IANN, ICANN, RIRs). There are
no real mechanisms available for creating new namespaces,
as even with IPv6, the 128-bit fields have been fixed and
follow formats with prefixes that Internet Assigned Numbers
Authority (IANA) defines.

One of the most significant new facets of this SCF proposal
for namespace security is that rather than living within existing
namespaces, or subsets of them, we are allowing the creation
of an infinite number of new namespaces, and to do so with
minimum effort and quickly. Communication is only possible
between nodes that have consented to join a given namespace,
so though a node may create its own namespace, this will be
worthless unless other nodes have policies that allow them to
become enrolled within the new namespace. Although similar
in concept to Virtual Private Networks (VPNs), the SCF
namespaces are more powerful for several reasons, including
(1) wider scope compared to VPN prefixes, (2) less brittle
configuration and potential for negative interaction with other
portions of a host Operating System (OS) networking stack,
and (3) better integrated with identifier-address resolution
mechanisms, preventing issues of confused scope that occur
in VPNs.

SCF’s multitude of namespaces also differs very signifi-
cantly from the Internet, as nodes that do not participate in
IP addressing are completely unreachable, and nodes have a
relatively poor and unclear granularity in terms of whether
they’re privately reachable [15] versus using globally routable
addresses. Furthermore, the lack of security in the IP names-
pace, allows visible and invisible proxies, Network Address
Translators (NATs), and other middleboxes to subvert the roles
and identities of end-nodes in communication flows, without

explicit consent, and this brutality is really the only way
to grow the Internet and add new features because of the
limitation of the single IP namespace.

In summary, the traditional approach to networking in
today’s Internet is to build one big layer-3 network and then
deploy firewalls and VPNs throughout until one deems the
network secure. Unfortunately, the configuration becomes so
baroque that it will almost certainly break eventually. Our
approach is to use credentials to build pair wise relations
with neighbors or end-to-end peers, and to verify hosts and
data prior to committing resources. No firewalls, VPNs, etc.
are required in order to implement the policies and security
postures desired. Rather, the architecture is actually just secure
by design.

IV. CREATING A SECURE NAMESPACE

To mitigate potential threats to network, data, and applica-
tion security SCF needs ways for:

• Applications (end-applications and agents) to validate
received data

• End-applications to protect transmitted data
• Agents to validate end-applications that attempt to utilize

them
• Agents to validate one another when in contact
Application of namespaces will enable these capabilities.
In a secure namespace, a root server exists somewhere

in order to keep a database of registered names within the
managed namespace, and to issue certificates when names
are allocated from the namespace. Once allocated, a name
should never be de-allocated or reused, since the lifetime of
containers/labels with the name may be unbounded (however,
names may be revoked). The root certificate for namespace
X, called the Name Space Identifier (NSI) certificate, needs
to be installed on systems hosting applications that will
use or (securely) process containers/labels with names from
namespace X. The NSI contains a public key for the root, and
optionally a description of the valid name formats within the
namespace (e.g. via a regular expression), along with optional
metadata. The root certificates are the only trusted components
of the system.

Given that SCF supports a multitude of namespaces, in
order to be implementable and deployable, the format needs
to be bounded. We propose to uniquely indicate namespaces
through the use of Universally Unique Identifierss (UUIDs)
created by the “namespace owner”. These UUIDs can follow
the format defined in RFC 4122 [16], which supports 128-bit
UUID constructed from a timestamp, sequence number, and
spatially unique node identification.

Since we recognize that time synchronization in SCF net-
works is difficult, and that even remembering the current
time across boot-ups may be difficult for some nodes, we are
initially using RFC 4122’s version 1 form of UUIDs, where
the timestamp is made robust to such issues via scoping it
within the other fields. In this form, the sequence number can
either be recorded between boots, or generated randomly (or
pseudo-randomly), and where the node identification comes
from either Institute of Electrical and Electronics Engineers

NASA/TM—2014-216665 3

Fig. 2. Creating a Namespace

(IEEE) Media Access Control (MAC) addresses or a self-
generated value. One downside to this form of UUIDs is that
they are not human-readable or otherwise indicative of the
namespace’s purpose. Whether this is a downside in practice
or not needs to be determined through further experimentation
and deployment experience with SCF-based networks. We
suspect it may not be an issue, as a database service mapping
UUIDs to human-meaningful strings could be created, as well
as preconfiguring applications with the UUIDs of namespace
they need to operate within so that the UUIDs themselves are
not user-visible.

Once the UUID has been selected, the namespace owner
will associate it with a public/private keypair by creating a
certificate called the Name Space Identifier (NSI) [Fig. 2].
This certificate holds fields for the UUID and public key, and
is signed using the private key. Of course, the details of the
certificate format and the cryptographic algorithms chosen are
of interest, and those are addressed in section 6, Certificate
Details.

The namespace owner is now responsible for managing
a database recording any names that it has granted. The
basic schema for this database needs to include a sequence
number, the allocated name itself (an arbitrary string of bits),
a public key from the node that the name was allocated to,
and potentially timestamps associated with the name creation
and/or expiration.

At this point, the namespace has been created, and the
namespace owner can serve requests for allocating names, as
described in the next section.

It is imperative to understand that in order to be a user of this
namespace, the user must obtain a copy of the NSI certificate.
This could be done in a number of ways. The key question
is how is this bootstrapped, how does the initial creation and
distribution of the NSI work in a practical deployment? One
method that is highly likely - particularly for SCF networks
consisting of sensors - is that an entity is populated with at
least one NSI during pre-deployment or even as part of the
manufacturing process. For other types of applications (that
build overlays for instance), the NSI could be installed when
the application is installed. Also, application software could
support importing NSIs retrieved from a web server or in

Fig. 3. Creating Proof-of-Names

some other way, similar to the way the Peer-to-Peer Session
Initiation Protocol (P2PSIP) Distributed Hash Tables (DHTs)
are configured [17]. Without an NSI, a system cannot validate
any names within that particular namespace associated with
that particular NSI.

V. ALLOCATION OF NAMES

We need a mechanism to secure and validate names and
applications. We propose to support this by using simple
certificates called Proof-of-Name (PoN) certificates, related
to NSI certificates. How an application receives its names
is highly dependent on the operational environment. In some
cases, this may be totally pre-configured and statically setup,
requiring no direct real-time contact with the root of the
namespace. In other cases, applications may be able to dynam-
ically receive PoN certificates during a time of connectivity
to the root. The following describes the procedures to obtain
and allocate validated names from the perspective of the name
requester.

The name requester wishes to obtain a name from the
namespace owner to be used as a secure identifier. In order to
do so, the requester needs to obtain a PoN certificate from the
namespace owner. The requester either asks for a particular
name (identifier) explicitly or allows for an owner-selected
name. The requester supplies its public key (described in 5.1).
The namespace owner either checks its database to see if the
specific name is available or generates an unambiguous name
per the request. The namespace owner enters the name into
the database and marks it as in-use, storing the public key
and returning a PoN certificate for the name, signed by the
namespace owner [Fig. 3]

Names may be hierarchically assigned by the owner, sup-
porting addressing as just another type of namespace that
happens to have structure. A request can also be issued to
request a batch of names (a delegated-subnetwork-namespace);
this allows for secure prefix-delegation in an addressing system
from the namespace owner. In this case, there is a slight
modification to the basic operations using a Hierarchical
Proof-of-Name (HPoN) certificate:

• The HPoN certificate’s name field needs to indicate a
range of names that have been allocated, rather than a
single name.

NASA/TM—2014-216665 4

• The namespace owner’s database needs to handle ranges
of names.

• All HPoN certificate holders become namespace owners
and need to hold their own database of any PoNs or
HPoNs they grant within the delegated subset of the
namespace.

• When HPoN certificates are given out from the subsets
of the namespace (below the top-level), they include a
copy of the upper-level delegated-subnetwork-namespace
owner’s PoN as well. This is needed in order to validate
the HPoNs using (and trusting) only the NSI certificate.

A. User Key Pairs for Requesting Names

The public key used for requesting a name could be from an
existing keypair, or one that is generated just for the purpose
of use with that name. It all depends on the situation and
operational environment. For instance, if privacy/anonymity
is a concern, a brand new keypair could be generated to use
with an ephemeral name, and everything would be disposable.
If access control to the namespace is an issue, keys that
are already in-use and vetted somehow (e.g. through being
present in a Personal Identify Verification (PVI) card Public
Key Infrastructure (PKI) system) could be used.

In general the source of key material should not matter
to the naming system. However, there will definitely be
some expectations on the sources of key material for specific
applications creating and using the namespaces.

VI. CERTIFICATE DETAILS

The certificates in our secure naming system are not X.509
certificates [18]. Rather, they need to be much simpler in
order to only support the profile of fields that is required for
secure naming and reduce processing requirements and code
footprint, as well as certificate size.

NSI certificates include the following information
• Namespace UUID
• Public key of namespace-holder
• Signature from namespace owner
• Optional Fields:

– Cryptographic Algorithm(s) used
– Additional Serial (Sequence) Number
– Regular Expression for names within the namespace
– Creation Timestamp (rather coarse to be useable in a

SCF network)
– Expiration Timestamp (rather coarse to be useable in

a SCF network)
PoN certificates only need to include the following infor-

mation:
• Namespace UUID (matching the NSI)
• Name granted
• Public key of name-holder
• Signature from namespace owner
• Optional Fields

– Serial (Sequence) Number
– Creation Timestamp (optional and likely not readily

useable in a SCF network)

– Expiration Timestamp (optional and likely not readily
useable in a SCF network)

Numerous cryptographic algorithms are available for gen-
erating the needed keypairs, digital signatures, etc., as well as
specifications for certificate encoding and other aspects. The
NSI certificate can indicate which cryptographic algorithms
are to be used for operations within the namespace. This
provides the namespace owner with the freedom to pick any
sets of cryptographic algorithms, and optionally include them
within the NSI. This information is only optional because
in some highly embedded systems it may be fixed to the
limited capabilities of the particular devices and statically pre-
configured or otherwise known rather than a matter of choice.
Due to nature of SCF and design principles of SCF, the need
to Keep It Simple, in initial experiments we are using only one
public key crypto suite (Elliptic Curve Cryptography (ECC)
per National Security Agency (NSA) Suite B with 256-bit
prime modulus Elliptic Curve Diffie-Hellman (ECDH) and El-
liptic Curve Digital Signature Algorithm (ECDSA); one block
cipher (Advanced Encryption Standard (AES)-128 Counter
encryption mode (CTR)); and, one hash algorithm (Secure
Hash Algorithm (SHA)-256), but other deployments can pick
different algorithms while supporting the same concepts.

Names and namespaces could have an expiration date,
but supporting this goes back to the time synchronization
requirement that SCF needs to avoid. However, for SCF
distributed applications, time-synchronization could be much
’rougher’ than today’s connected systems.

The serial number and timestamp fields in the NSI are
optional they may be redundant with the fields within the
UUID, if the lengths there are sufficient.

The secure namespace concepts presented here are agnostic
to the concrete encoding of certificates as they are stored and
exchanged. However, in any practical use of these concepts,
concrete formats need to be defined. For our experiments,
involving small systems such as in space exploration and
sensor nodes, with no tolerance for extraneous code, we
believe that X.509 certificates carry far too much baggage
that isn’t strictly necessary. We are instead experimenting
with JavaScript Object Notation (JSON) objects that hold the
necessary fields, and are rather easy to parse and generate with
very small amounts of code.

A. Certificates and Name Revocation

Once issued, an attacker that obtains the corresponding
private key could maliciously use an SCF PoN certificate. This
is obviously a problem for distributed applications operating
over intermittently connected and disconnected networks, as is
the time to notify is unbounded and in the extreme is infinite.
However, that do not mean one cannot attempt to mitigate the
problem.

Two ways that this can be mitigated are through flooding of
Certificate Revocation Lists (CRLs) when the compromise of
the public key is suspected, and through using lifetimes on the
certificates designed to expire before the private key is likely
to be compromised. The downsides to flooding CRLs is that it
takes memory, network capacity, and time which will all be at

NASA/TM—2014-216665 5

a premium in the use cases SCF is desired for. The downside
to expiration times is that using them requires at least rough
synchronization of distributed system clocks.

As stated previously, it is difficult to synchronize state
across SCF - particularly time. Because of this, traditional
PKI techniques for revoking certificates (and names) cannot be
used. However, to provide some benefits, time-synchronization
may only need to be to a coarse granularity of, for instance,
a day. Even that may be non-trivial, in some systems (e.g.
across reboots). Regardless, we suggest that other methods
are possible.

Without needing other nodes to understand an absolute
expiration time, the namespace owner can simply revoke
certificates when it unilaterally decides the expiration time has
been reached. Because the NSI and PoN certificates have serial
numbers, and because certificates within the same namespace
should typically be expiring in sequence, this can be exploited
in a sort of CRL compression method. For example, a rather
small revocation message could be flooded containing only the
serial number of the lowest unexpired PoN within a namespace
or NSI generated by the owner. This would be signed with
the owner’s private key. On reception, nodes would be able to
store only this sequence number and know that any certificates
below it are no longer valid. This implements a sort of rolling
window of valid certificates advanced by the owner.

In exceptional cases where the namespace owner needs
to revoke certificates prior to natural expiration (e.g. in the
case of compromise), a set of additional revoked sequence
numbers can be appended to the flooded message. As such
incidents will hopefully be significantly more rare than natural
expiration, and as once natural expiration is reached, these
special case revocations become subsumed by the advancing
minimum valid sequence number, we believe this stands a
good chance of working quite well in practice.

Note that having the namespace owner announce revoca-
tions in this way does not prevent further mechanisms from
being incorporated into implementations in order to support
more timely responses to incidents known within disconnected
pockets of the network. For instance, it may be useful in some
environments to be able to blacklist given names if there’s
confidence that they’ve been compromised through some other
means (like localized Host or Network Intrusion Detection
Systems), even prior to a CRL being obtained that covers them.

It is important to note the following two items regarding
SCF certificates:

• Since time-synchronization cannot be assumed, the cer-
tificates do not strongly support non-repudiation; and,

• A namespace owner destroys the namespace if it revokes
its own NSI certificate, only if notice of that revocation
reaches all nodes, and is remembered by them (e.g. not
forgotten about after a reboot).

In this secure naming system, it is currently much easier to
create namespaces and names than it is to effectively destroy
them. This may be a fruitful area of future work.

VII. DISCOVERING AND QUERYING NAMES

Creating a namespace and allocating names within it are
necessary but not sufficient to enable communications. There

needs to be a way for the names of reachable nodes and
applications to be discovered and mapped into lower-layer
protocol details in order to establish communications. This
is provided through a generic directory service. This does
not assume or imply that the addresses are exposed to the
applications. Rather, this is the binding between the service
e.g., application, and the node it at which it resides. That
directory service can be implemented in a number of different
ways, all optional for a given use of secure namespaces, and
all requiring some further concrete details. These discovery
mechanisms are specific to the given lower-layer protocols that
secure namespaces are being built on top of in an application.

The namespace owner already maintains a database of the
granted certificates, so it seems natural at first to also use
that database for directory services by enhancing it with
lower-layer locators for the granted names. This clearly has
scalability issues, since we have not yet defined a way to
distribute the namespace owner role within a namespace. It
also would only be useful in scenarios where nodes have
frequent connectivity that allows communications with the
namespace owner in order to query and update records as
their lower-layer locators change. Clearly it is not a complete
workable solution for SCF distributed applications.

Another approach is to define neighbor discovery mecha-
nisms similar to those used in IPv6., which will make use of
lower-layer multicast/broadcast capabilities in order to learn
about the nodes and applications that are available within the
local scope of the lower-layer protocols. This is relatively
easy to do by adapting the formats, timers, and algorithms
that IPv6 neighbor discovery uses, and simply replacing the
address fields with secure name fields. In contrast to IPv6
Secure Neighbor Discovery (SeND), however, our secure
namespace concept allows much easier proof of ownership
to be demonstrated (see section 9). Establishment of neigh-
bor relationships allows communications to be secured with
the obtained credentials, optionally providing authentication
and/or privacy services for future exchanges.

A neighbor discovery based approach for learning name
bindings is likely to work better in most SCF scenarios than
a centralized database. However, the neighbor discovery only
works within the scope of a single lower-layer hop. It does not
support multi-hop forwarding or discovering the bindings for
names that are owned by nodes that are multiple hops away
within the underlying network. For this, multiple approaches
can be made to work, including adaptation of existing routing
algorithms and protocols such as Trickle [19] or IPv6 Routing
Protocol (RPL) [20], adaptation of resource-locating protocols
like Application-Layer Traffic Optimization (ALTO) [21], or
developing a gossiping query protocol. In fact, different SCF
scenarios that we have defined are certain to drive alternative
approaches for this part of instantiating the secure naming
concepts within a concrete system. This is an area where
the most future work is needed in the near term; however,
we believe it can be done largely using existing protocols as
models or frameworks. In section 11, Directory Services, we
provide some notional deployment scenarios for Directories.

NASA/TM—2014-216665 6

VIII. VALIDATING NAME OWNERSHIP

Given that the NSI for a namespace is generated by the
owner and distributed to any applications that will be working
within that namespace, all applications are guaranteed to have
the public key of the namespace owner, and be able to check
signatures generated using the owner’s private key. Since the
owner’s private key is used to sign the PoN certificates, any
PoN certificates received from other applications can be easily
validated, without resorting to cumbersome certificate chain
operations normally involved in PKI-based systems.

This only proves that the PoN certificate is legitimate and
that the name has been issued; it does not prove that the
application providing the PoN indeed holds the private key
associated with the public key, nor does it prove that the name
has not been revoked for some reason.

Proving ownership of the name within the PoN can be done
in two ways:

1) Via a challenge-response exchange, in which the verify-
ing party encrypts a puzzle with the public key from the
PoN, and awaits a response that could only be gener-
ated through decrypting the puzzle, thus demonstrating
possession of the private key.

2) Via a signature using the corresponding private key and
covering the PoN plus some nonce like a timestamp,
sequence number, or other freshness indicator that is
bootstrapped out-of-band in a way that prevents replay
attacks.

The first method is relatively straightforward but requires
both parties to be “online” or with direct low-latency commu-
nication, otherwise much time and the corresponding oppor-
tunities for communication may be wasted.

The second method is more complex, and requires some
help or support from the lower-layer protocols in order to
provide the means to indicate freshness of a signature; possibly
requiring time synchronization. The significant advantage of
this method is that it can potentially be done one-way (without
bidirectional exchange) and thus may be more amicable to
scenarios where there is only unidirectional connectivity, high-
delays, or lack of concurrent end-to-end paths.

IX. AUTHENTICATING AND ENCRYPTING

Authenticating and encrypting data to a given name is a
relatively straightforward process. To authenticate data (the
container), the sender signs the data using the private key
corresponding to the public key in the sender’s PoN. The
receiver then uses the PoN public key to check the signature
and (if necessary) validates the PoN using the appropriate
NSI certificate [Fig.4]. Similarly, to encrypt data, the sender
uses the public key in the destination’s PoN to encrypt data.
The receiver then uses the private key portion of the keypair
identified in its PoN in order to decrypt the data it receives.

For SCF networks, it is highly desirable for a receiving
agent to determine early within a transfer whether or not to
accept the data in order to maximize resource utilization (e.g.
bandwidth, storage, computation, battery). Thus, the ability to
authenticate the data source is imperative. If the SCF protocol
is designed in a matter to allow the shipping label to be

Fig. 4. Authenticating Names

processed separately from the container body, the label can
be authenticated efficiently within the network precisely in
the same manner as the complete container’s data.

X. APPLICATIONS AND NAMESPACES

All applications need to have an Application Process Name
(APN) that identifies them. Some APNs can be Distributed
Application Namess (DANs) in order to support multicast style
delivery, but in the basic case, an APN uniquely identifies a
single process, and DANs are an advanced topic, beyond the
scope of this paper.

SCF agents are applications that parse labels and relay
containers for other applications. SCF agents have APNs
drawn from a namespace that identifies them as relaying
applications. It is assumed that the applications (including SCF
agents) share the same set of NSIs in order to be able to
communicate within a namespace.

How the application receives an APN, was covered in sec-
tion 5, Allocation of Names. For now, assume the application
knows about its APN, and has a certificate to prove that
the APN was assigned from a root for the namespace. The
application should internally posses the private key, which
corresponds to the public key within its PoN certificate. This
allows the application to prove ownership of the APN to
any SCF agents or other SCF applications within the same
namespace.

A. Suggested Application Program Interface (API) based on
APNs

Applications use SCF via an API that can be system/vendor
dependent. SCF agents can be within the same platform as
applications or remote; the API is all that matters. An example
API is shown below:

• Poll for any SCF agents or SCF applications directly
known to the local system. The SCF agents in the network
may be using a beacon process to broadcast their pres-
ence, may be statically configured on systems, or may be
discovered through some other type of dynamic process.
It does not matter to the application. When polling, the
application’s APN should be provided, since some SCF
agents may only have access controls that permit specific
APNs to utilize them, and are not generally available to
relay for all applications. This polling should return a

NASA/TM—2014-216665 7

list of APNs that identify the SCF agents. There might
be two flavors of polling; one that returns immediately
with currently known information, and one that blocks
while some on-demand results are collected by the local
system; not all systems need to support both.

• Register the application’s APN with a particular SCF
agent. This should block and return success/failure. Reg-
istration may allow the application to reserve space on
the agent for incoming/outgoing containers.

• Send a container via a SCF agent the application is
registered with. The send call should include some way
of ’signing’ the request, so that the SCF agent can authen-
ticate it before committing resources for the container.

• Receive a notification from a SCF agent the application is
registered with that a container has arrived for the APN,
giving relevant label material to the application.

• Request a given container’s contents from the SCF agent.
• Withdraw/destroy a registration with a SCF agent. This

needs to be authenticated.
It is important to note that the secure namespace operations

allow all of these functions to be performed in a robust manner
that protects both the network infrastructure and resources
(buffers, bandwidth, etc), as well as the nodes and applications
themselves. This is a significant difference from other store-
and-forward systems that have been built (e.g. based on DTN)
with similar APIs between relays and applications, but without
the strength of any security to the namespaces involved.

B. Addressing and Routing Application

The following demonstrates how naming is used by applica-
tions to communicate with one another and with SCF agents,
without having addressing information visible.

Advertising reachability of APNs between SCF agents can
be done securely, if, when registering, the application provides
a copy of its APN ownership certificate embedded in another
certificate that indicates delegation to the SCF agent’s APN
and is signed using the application’s private key. Other SCF
agents can then use the public key from the embedded certifi-
cate to check that signature, and can use the root certificate
for the application’s namespace in order to check the inner
certificate proving that the application itself really owns the
APN initially.

Full routes between SCF agents can be securely advertised
by further nesting the certificates this way. This mechanism
can be used to prove contacts have existed at one point in
time or another, and that transitive sets of contacts have taken
place over time, but does not show current or future proof of
reachability. That is part of the routing/addressing system.

XI. DIRECTORY SERVICES

In order to illustrate how name-to-address (N2A) binding
directory services could operate in SCF networks we provide
two examples. The first example is an army deployment. This
is used to show an SCF with high degree of disconnection. The
second example is the use of namespaces for aeronautics. The
purpose of the aeronautics example is to show how distributed
N2A directories are: updated, enable mobility, and enable

use of common infrastructure while simultaneously securing
critical infrastructure.

A. Army Field Operations

Figure 5 illustrates a conceptual field deployment for the
army. Army communications is highly structured - particu-
larly the closer one gets to the core network. In addition,
connectivity and bandwidth increase as one moves from the
soldier to the core. The field army hierarchy shown is of the
form, Division (DI), Brigade (BR), Battalion (BA), Company
(CO), Platoon (PL), and Squad (SQ). Each upper echelon is
composed of multiple lower echelons. For example, there are
8 to 16 soldiers in a squad, 2 to 4 squads in a platoon and 3 to
5 platoons in a company. In our example, Companies have full
connectivity to Battalions; Battalions have full connectivity to
Brigades; and Brigades have full connectivity to Divisions.

In figure 5, each rectangle from Division to Squad represents
a SCF routing agent. For convenience, the identities of these
SCF routing agents are provided by hierarchical names. The
upper rectangle is D1 for Division 1. The lower middle rect-
angle as squad echelon level is SQ4.PL1.CO5.BA3.BR2.DI1,
i.e. <Sqaud4> <Platoon1> <Company5> <Battalion3>
<Brigade2> <Division1>. Such a naming system could be
use as addressing, but care should be taken to not use appli-
cation identifiers as the point of attachment locator (address)
otherwise multi-homing and mobility problems will result (see
the following aeronautics example for clarification). In the
army example, we use a hierarchical numbering system for
addressing with the alphanumeric names for identities.

The Division is responsible for allocating addresses (loca-
tion names) in the namespace 1.0. When the Brigade routing,
BR2, attaches to Division router, DI1, BR2 sends and empty
request for names signifying that it is requesting an address,
or, in this case, a set of addresses. The Division allocates the
locator name 1.2 and the Delegated-Subnetwork-Namespace
(DSN) 1.2.* to the Brigade router, BR2. BR2 is now respon-
sible for that DSN and passes a fraction of that down to
the Brigade 3 router, BR3. BR3 in now responsible for DSN
1.2.3.*. As echelon routers connect to the system, they request
and are allocated sub-address space. Note, prior to time,
T1, the Platoon and Squad routers have not been allocated
delegated-subnetwork-namespace (addresses). At time, T1, the
Platoon routers receive their address allocations and at time,
T2, the Squad routers have delegated-subnetwork-namespace

Two soldiers are represented by their identities, ID123 and
ID199. They have no addresses until time, T3, at which
time they can communicate up and down within the 1.0
namespace. At time, T4 they become disconnected. At time,
T5, they connect to each other and can communicate over a
link local address on the wireless connection. They can only
communicate via applications that have been allocated and
validated. Validation occurs using the common NSIs for those
particular applications (see the following aeronautics example
for clarification). At time, T6, soldier ID123 can communicate
with and across echelons within the 1.0 namespace using an
entirely new location identifier. Note, rebinding of location
to identity occurs from bottom up. Thus, those nearest to the

NASA/TM—2014-216665 8

Fig. 5. Notional Field Army Naming and Addressing

mobile node will perceive the updates more quickly than those
topologically further away. This is exactly what we want in a
SCF network. Also, during times of disconnection, when, for
instance, ID123 cannot find or connect to ID199, sending the
containers up the tree is perfectly reasonable as one would
expect the location of ID199 to eventually propagate to the
upper echelons.

B. Aeronautical Mobile Networks

Figure 6 illustrates and aeronautical mobile network and
table 1 shows the B2A directory updates. This example is
used to show: how the B2A tables get updated; how mobility
is accommodated; and, how namespaces can be used to enable
shared infrastructure while securing critical infrastructure.

For this aeronautics network, we have a number of domains;
each can have their own set of namespaces for applications.
We also have a global routing namespace for addressing
(location). In aeronautic networks, Air Traffic Control (ATC) is
a critical communication system for safety of flight and safety
of life. Airline Operation Control (AOC) is used for passenger
information, fuel, weather, electronic flight bags and other
applications often specific to the airlines. In future networks

it is envisioned that ATC and AOC may be permitted to share
the same radio links. However, ATC is always given priority
over AOC. The other system on an aircraft is the Passenger
Internet and Entertainment Services (PIES). This is generally
and open network. We also have the open Internet services
on the ground as well as the various passengers’ corporate
networks (private networks).

In figure 6 we show eight different N2A directories. Di-
rectory 2 is a local, on aircraft directory. The aircraft ID is
NX211. We assign the aircraft router the same ID. In this ex-
ample, assume there are 5 computing systems onboard, ATC,
AOC, and three passengers’ computers (e.g. smart phones,
pads, laptops, etc.). ATC has one application with a UUID
of NX211(atc). AOC has three applications: NX211(efb),
NX211(fuel), and NX211(weather). The local onboard router
is providing pong and chess as entertainment applications to
the passengers. Chuck and Kim have registered to play pong.
Chuck and Larry have registered to play chess as well as access
to the Internet. Kim will be using her corporate email system.

While on the ground at the gate, all systems are connected
via the AeroMAX link. AeroMAX is a shared, high-speed
wireless link used on the airport tarmac for communication to

NASA/TM—2014-216665 9

Fig. 6. Aeronautical Network

multiple entities. Once in the air, enroute, the aircraft ATC and
AOC can use Link-2 back to the FAA Control Center. Link-2
is a highly reliable, low-rate link. This link is not available
to passengers. NX211 happens to have satellite service. This
link is available to passengers and (let us assume) it is also
available to ATC and AOC services. At some point in the
flight, there is a handover from link-2 (Cleveland Control
Center) to link-4 (Chicago Control Center).

Table I shows the N2A binding updates that occur during
various stages of flight. At time, T1, the onboard systems
update their binding with the local directory, D2. Also, all
systems are permitted to use the AeroMAX. Thus, all systems
send binding information to Directory 4. Directory 4 then
updates the AOC and ATC directories. At time, T2, Links 2
and 3 are active. ATC and AOC are permitted to use both links
with PIES is only permitted to use Link-3. The corresponding
directly connected directories, D5 and D8 receive binding
updates. Note that ATC and AOC are now multi-homed (i.e.
have two or more N2A binding entries). In addition, at time,
T2, ATC, AOC and PIES have all moved topologically. Finally,
at T3, Link 2 is inactive and link 3 is active. Thus ATC
and AOC binding updates show mobility from the Cleveland
Control Center to the Chicago Control Center.

XII. QUALITY-OF-SERVICE

In the Aeronautics Networking example, we show that
specific networks can be separated via namespaces. In this
manner we can restrict use of various links such as links 2
and 3 to various namespaces (here ATC and AOC. This is one
aspect of (Quality of Service (QoS)).

An important aspect of QoS regarding SCF networks is
the ability to manage resources (e.g. storage, computation,
bandwidth and power - battery life). This is critical for SCF
systems as resources are precious. Furthermore, and inability
to properly manage resources opens the system to denial-

TABLE I
NAME-TO-ADDRESS BINDINGS

T1 - Link 1 (WIMax)
T2 - Link 2 (Cleveland Control Center), Link 3 (KuBand Satellite)
T3 - Link 4 (Atlanta Control Center, Link 3 (Ku-Band Satellite)

Directory Application Address Application Address Application Address
1 NX211(efb) _.A.B.2 NX211(efb) _.C.D.2 NX211(efb) _.J.K.2

AOC NX211(efb) _.X.Y.2 NX211(efb) _.X.Y.2
NX211(fuel) _.A.B.2 NX211(fuel) _.C.D.2 NX211(fuel) _.J.K.2

NX211(fuel) _.X.Y.2 NX211(fuel) _.X.Y.2
NX211(weather) _.A.B.2 NX211(weather) _.C.D.2 NX211(weather) _.J.K.2

NX211(weather) _.X.Y.2 NX211(weather) _.X.Y.2
2 chuck(pong) _.A.B.3 chuck(pong) _.X.Y.3 chuck(pong) _.X.Y.3

Local chuck(chess) _.A.B.3 chuck(chess) _.X.Y.3 chuck(chess) _.X.Y.3
larry(chess) _.A.B.4 larry(chess) _.X.Y.4 larry(chess) _.X.Y.4
kim(pong) _.A.B.5 kim(pong) _.X.Y.5 kim(pong) _.X.Y.5

3 NX211(atc) _.A.B.1 NX211(atc) _.C.D.1 NX211(atc) _.J.K.1
ATC NX211(atc) _.X.Y.1 NX211(atc) _.X.Y.1
4 NX211(atc) _.A.B.1

AeroMAX NX211(efb) _.A.B.2
NX211(fuel) _.A.B.2
NX211(weather) _.A.B.2
chuck(internet) _.A.B.3
larry(internet) _.A.B.4
kim(internet) _.A.B.5

5 NX211(atc) _.C.D.1
Cleveland NX211(efb) _.C.D.2
Control NX211(fuel) _.C.D.2
Center NX211(weather) _.C.D.2

6 NX211(atc) _.J.K.1
Atlanta NX211(efb) _.J.K.2
Control NX211(fuel) _.J.K.2
Center NX211(weather) _.J.K.2

7 kim(nasa.mail) _.A.B.5 kim(nasa.mail) _.X.Y.5 kim(nasa.mail) _.X.Y.5
NASA

8 chuck(internet) _.X.Y.3 chuck(internet) _.X.Y.3
Internet larry(internet) _.X.Y.4 larry(internet) _.X.Y.5
Public kim(internet) _.X.Y.5 kim(internet) _.X.Y.5

T1 T2 T3

of-service (DOS) attacks. Namespace can be used in SCF
firewalls to control resource allocations such as:

• What namespaces are permitted to use any of the system
resources at all;

• What links may be used by particular namespaces;
• How much storage will be allocated to a particular

namespace; and
• The size of the container that may be accepted for

reception.
Note, since we can prove that containers were sent by the

name-holder, QoS using namespaces has authentication unlike
what the IP world offers. It is also much stronger than what
Bundle Authentication Block (BAB) offers for DTN [22] since
it gives proof all the way back to the source, not just to the
previous hop. Thus, it is robust to having compromised agents
in the middle of the network generating bogus containers.

XIII. CONCLUSIONS

The secure naming system presented provides a light-weight
method for allocating and validating application names and
locators (addresses) that could be deployed in a Store, Carry
and Forward, normally disconnected networks. The technique
can also be applied to fully connected networks. By ensuring
that the application names separate from the location names,
the system readily handles multi-homing and mobility.

Our system could be an enabling technology for the aero-
nautics networks vastly simplifying operations and manage-
ment. For instance, every infrastructure provider can maintain
its own namespaces for management of its equipment. Since
these are not exposed to the users, most security threats to the
infrastructure instantly disappear.

Infrastructure providers that wish to confederate for the
purposes of creating a routable address space between them

NASA/TM—2014-216665 10

can do so, and those routable addresses still do not expose their
management and control planes to one another. Mobile users
sharing NSI certificates for that address space, can roam to
any provider that’s also part of it, without any pre-existing trust
relationships, and obtain addresses. If they need to be globally
reachable themselves, they can use their own namespaces
above, created for specific domains (ATC, AOC, PIES) and
allowing applications from all domains to utilize the same
infrastructure yet be completely isolated from one another
except for sharing bandwidth. Such techniques also apply to
securing “Critical Infrastructure Networking”. There will be
no fear of accidentally leaking routes, because the namespaces
have been factored out, access to names is secured, and proof
of ownership is verified.

REFERENCES

[1] W. Ivancic, W. Eddy, D. Iannicca, and J. Ishac, “Store, Carry
and Forward Problem Statement,” Internet Engineering Task Force,
Internet-Draft draft-ivancic-scf-problem-statement-00, Jul. 2012, work
in progress. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ivancic-scf-problem-statement-00.txt

[2] W. Ivancic, W. WesleyEddy, D. Iannicca, and J. Ishac, “Store, Carry
and Forward Testing Requirements,” Internet Engineering Task Force,
Internet-Draft draft-ivancic-scf-testing-requirements-00, Jul. 2012, work
in progress. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ivancic-scf-testing-requirements-00.txt

[3] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC
4838 (Informational), Internet Engineering Task Force, Apr. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4838.txt

[4] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050
(Experimental), Internet Engineering Task Force, Nov. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5050.txt

[5] L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, C. Jackson,
and A. da Silva Curiel, “Use of the delay-tolerant networking bundle
protocol from space,” in Proceedings of the 59th Astronautical Congress,
Glasgow. IAC, 2008.

[6] W. Ivancic, P. Paulsen, D. Stewart, W. Eddy, J. McKim, J. Taylor,
S. Lynch, J. Heberle, J. Northam, C. Jackson et al., “Large file
transfers from space using multiple ground terminals and delay-tolerant
networking,” in Global Telecommunications Conference (GLOBECOM
2010), 2010 IEEE. IEEE, 2010, pp. 1–6.

[7] R. Watson, “Timer-based mechanisms in reliable transport protocol
connection management,” Computer Networks (1976), vol. 5, no. 1, pp.
47–56, 1981.

[8] J. Day, Patterns in network architecture: a return to fundamentals.
Prentice Hall, 2007.

[9] J. Shoch, “A note on inter-network naming, addressing, and routing,”
Xerox Palo Alto Research Center, IEN, vol. 19, 1978.

[10] J. Saltzer, “On the Naming and Binding of Network Destinations,” RFC
1498 (Informational), Internet Engineering Task Force, Aug. 1993.
[Online]. Available: http://www.ietf.org/rfc/rfc1498.txt

[11] P. Nikander, J. Laganier, and F. Dupont, “An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers (ORCHID),” RFC 4843
(Experimental), Internet Engineering Task Force, Apr. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4843.txt

[12] G. Huston and R. Bush, “Securing bgp with bgpsec,” in The Internet
Protocol Forum, vol. 14, no. 2, 2011.

[13] [Online]. Available: http://www.dnssec.net/
[14] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor

Discovery (SEND),” RFC 3971 (Proposed Standard), Internet
Engineering Task Force, Mar. 2005, updated by RFCs 6494,
6495, 6980. [Online]. Available: http://www.ietf.org/rfc/rfc3971.txt

[15] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,
“Address Allocation for Private Internets,” RFC 1918 (Best Current
Practice), Internet Engineering Task Force, Feb. 1996, updated by RFC
6761. [Online]. Available: http://www.ietf.org/rfc/rfc1918.txt

[16] P. Leach, M. Mealling, and R. Salz, “A Universally Unique
IDentifier (UUID) URN Namespace,” RFC 4122 (Proposed Standard),
Internet Engineering Task Force, Jul. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4122.txt

[17] C. CullenJennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Hen-
ningSchulzrinne, “REsource LOcation And Discovery (RELOAD) Base
Protocol,” Internet Engineering Task Force, Internet-Draft draft-ietf-
p2psip-base-23, Nov. 2012, work in progress. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-base-23.txt

[18] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” RFC 3280 (Proposed Standard), Internet Engineering Task
Force, Apr. 2002, obsoleted by RFC 5280, updated by RFCs 4325,
4630. [Online]. Available: http://www.ietf.org/rfc/rfc3280.txt

[19] P. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self regulating
algorithm for code propagation and maintenance in wireless sensor
networks. Computer Science Division, University of California, 2003.

[20] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[21] (2013, January) Application-layer traffic optimization (alto). [Online].
Available: http://datatracker.ietf.org/wg/alto/

[22] S. Symington, S. Farrell, H. Weiss, and P. Lovell, “Bundle
Security Protocol Specification,” RFC 6257 (Experimental), Internet
Engineering Task Force, May 2011. [Online]. Available: http:
//www.ietf.org/rfc/rfc6257.txt

NASA/TM—2014-216665 11

http://www.ietf.org/internet-drafts/draft-ivancic-scf-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-ivancic-scf-problem-statement-00.txt
http://www.ietf.org/internet-drafts/draft-ivancic-scf-testing-requirements-00.txt
http://www.ietf.org/internet-drafts/draft-ivancic-scf-testing-requirements-00.txt
http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc5050.txt
http://www.ietf.org/rfc/rfc1498.txt
http://www.ietf.org/rfc/rfc4843.txt
http://www.dnssec.net/
http://www.ietf.org/rfc/rfc3971.txt
http://www.ietf.org/rfc/rfc1918.txt
http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-base-23.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc6550.txt
http://datatracker.ietf.org/wg/alto/
http://www.ietf.org/rfc/rfc6257.txt
http://www.ietf.org/rfc/rfc6257.txt

APPENDIX

LIST OF ACRONYMS

AES Advanced Encryption Standard
AOC Airline Operation Control
API Application Program Interface
APN Application Process Name
ATC Air Traffic Control
CRL Certificate Revocation List
CTR Counter encryption mode
DAN Distributed Application Names
DHT Distributed Hash Table
DNS Domain Name System
DSN Delegated-Subnetwork-Namespace
DTN Delay/Disruption/Disconnection Tolerant

Networking
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
GUA Global Unique Address
HPoN Hierarchical Proof-of-Name
IANA Internet Assigned Numbers Authority
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
IPv6 Internet Protocol version 6
JSON JavaScript Object Notation
MAC Media Access Control
MANET Mobile Ad Hoc Network
N2A name-to-address
NAT Network Address Translator
NSA National Security Agency
NSI Name Space Identifier
OS Operating System
PIES Passenger Internet and Entertainment Services
PKI Public Key Infrastructure
PoN Proof-of-Name
PVI Personal Identify Verification
QoS Quality of Service
SCF Store, Carry and Forward
SHA Secure Hash Algorithm
SF Store and Forward
URL Uniform Resource Locator
UUID Universally Unique Identifiers
VPN Virtual Private Network

NASA/TM—2014-216665 12

	TM-2014-216665
	Introduction
	Terminology

	Namespaces (Naming and Addressing)
	Philosophy of Multiple Namespaces
	Creating a Secure Namespace
	Allocation of Names
	User Key Pairs for Requesting Names

	Certificate Details
	Certificates and Name Revocation

	Discovering and Querying Names
	Validating Name Ownership
	Authenticating and Encrypting
	Applications and Namespaces
	Suggested API based on APNs
	Addressing and Routing Application

	Directory Services
	Army Field Operations
	Aeronautical Mobile Networks

	Quality-of-Service
	Conclusions
	References
	Appendix

