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An Evaluation of Protocol Enhancing Proxies and Modern 
File Transport Protocols for Geostationary Satellite 

Communication 

 
Abstract—NASA is utilizing Global Hawk aircraft in high-
altitude, long duration Earth science missions. 
Communications with the science payload is via Ku-Band 
satellites in geostationary orbits. All payload communications 
use standard Internet Protocols and routing, and much of the 
data to be transferred is comprised of very large files. The 
science community is interested in fully utilizing these 
communication links to retrieve data as quickly and reliably as 
possible. A test bed was developed at NASA Ames to evaluate 
modern transport protocols as well as Protocol Enhancing 
Proxies (PEPs) to determine what tools best fit the needs of the 
science community. This paper describes the test bed used, the 
protocols, the PEPs that were evaluated, the particular tests 
performed and the results and conclusions. 
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1. INTRODUCTION 

NASA has acquired two Global Hawk Unmanned Aerial 
Vehicles (UAVs) to enhance upper atmospheric science in 
support of the Earth Science Project Office (ESPO). 
Communication with the experimental payload is by a Ku-
Band satellite link.  NASA’s Earth Science Technology 
Office (ESTO) Advanced Information System Technology 
(AIST) program funded the “Real-Time and Store-and-
Forward Delivery of Unmanned Airborne Vehicle Sensor 
Data” task to improve the amount and type of science that 
can be performed via sensors onboard Unmanned Arial 
Vehicles (UAVs).  This will be accomplished by improving 
access to sensors, improving data gathering, increasing 
timely access to critical data and improving data throughput 
during times of connectivity.  To accomplish this, NASA’s 
Glenn and Ames Research Centers are improving the data 
throughput and utilization of current UAV remote sensing 

by developing and deploying technologies that enable 
efficient use of the available communications links – in 
particular, deployment of efficient transport protocols that 
use Internet technologies 

2. PEP AND PROTOCOL TESTING   
The users of the Global Hawk atmospheric research 
platform are the scientists (i.e. the Principal Investigators 
and their collaborators).  This group is interested in ease of 
use and maximum delivery of science data. Their preference 
is to use as many existing Internet protocols as possible.  
Doing so allows the scientists to test their instruments and 
data collecting in the lab, on the ground, and in flight using 
the same protocols, commands, and scripts. The PIs desire 
to use the exact same Internet tools used in the lab while 
controlling instrumentation onboard the Global Hawk while 
maintaining a good user experience. Here, a good user 
experience is getting the required science data down in a 
timely manner.  This has to be done while operating over 
near-error-free links with 600 milliseconds Round Trip 
Time (RTT) delays. 

The protocols currently used are all based on the 
Transmission Control Protocol (TCP). They include: Telnet, 
Secure Shell (SSH), and file transfer protocols (i.e. File 
Transfer Protocol (FTP), Secure Copy Protocol (SCP), 
Secure File Transfer Protocol (SFTP), RSYNC, WGET, 
etc…). Often the file transfer protocols are run in an SSH 
tunnel.  

In the late 1980s through the 2000s, in the days of 
Windows® and Windows XP®, manual tuning of TCP 
parameters was required for data links with very large 
bandwidth/delay products (BDP) such as found in high 
bandwidth Geostationary satellite links. This manual tuning 
is non-trivial and does not scale (every end user had to be a 
networking expert).  One solution  - not without problems -
was to put a protocol enhancing proxy (PEP) between the 
two end systems [1]. A PEP is used to improve the 
performance of the Internet protocols on network paths 
where native performance suffers due to characteristics of a 
link.  PEPs generally attempt to improve the traditional TCP 
control loops by either spoofing TCP connections or 
breaking the TCP connections into two and placing a 
protocol between the TCP end systems that does not assume 
all packet loss is due to congestion. This allows the protocol 
tuning to be performed in the PEPs rather than in all the end 
systems passing data through the PEPs. 

Patrick E. Finch 
University Corporation at Monterey Bay 

NASA Ames Research Center 
Moffett Field, CA 94035  

605-604-4324 
patrick.e.finch@nasa.gov 

Donald  V. Sullivan 
NASA Ames Research Center 

Moffett Field, CA 94035 
605-604-0526 

donald.v.sullivan@nasa.gov 

William D. Ivancic 
NASA Glenn Research Center 

Cleveland, OH 44135 
216-433-3494 

william.d.ivancic@nasa.gov 
 



 2 

Over the years, TCP implementations have improved to 
include many self-tuning features as well as to eliminate or 
reduce some security vulnerabilities.  Thus, the questions to 
be addressed are “Will a PEP improve system performance 
and if so, by how much?” or, “Should we simply use 
existing TCP-based protocols available in modern kernels or 
perhaps use a rate-based protocol?” 

3. PROTOCOL DESCRIPTION 
TCP Protocol 

TCP is a reliable transport protocol built into the kernel of 
computer operating systems.  It guarantees reliable, ordered 
delivery of a stream of bytes from a program on one 
computer to another program on another.  TCP is designed 
to operate over shared networks. It includes flow control 
and congestion control algorithms that work well in the 
terrestrial Internet.  The congestion control algorithm design 
is such that operation over noisy and long delay links is 
problematic.  TCP will guarantee data delivery, but the link 
will not be used efficiently as TCP assumes any loss to be 
caused by congestion.  In particular, standard TCP often 
fails to fully utilize the network capacity in large links with 
large BDP due to the limitation in its conservative 
congestion control algorithm.  Much work has been done 
and is ongoing to improve the connection’s throughput by 
adopting more aggressive loss-based congestion control 
algorithms – particularly in Linux builds [2]. One example 
is TCP-CUBIC, which is the default TCP implementation in 
Linux Kernel 2.6.19 [3]. Another example is Compound 
TCP (CTCP) developed by Microsoft, which is designed to 
provide good bandwidth scalability with improved RTT 
fairness, and at the same time achieves good TCP-fairness, 
irrelevant to the windows size [4].  

 

Saratoga Rate-Based Transport Protocol 

Saratoga is a simple, lightweight, content dissemination 
UDP-based protocol that operates at line rate or, for some 
implementations, at a fixed-rate setting [5]. Saratoga was 
designed for use on private networks with no competing 
traffic and is capable of transferring very large amounts of 
data reliably under adverse conditions. Current 
implementations of Saratoga assume no congestion and thus 
deploy no congestion control algorithms. On private links, 
where one can be assured there is no congestions, there is no 
need to probe the system to determine available bandwidth 
or to reduce data-rates when losses occur as all losses are 
assumed to be due to errors rather than congestion. 
Regardless, work is ongoing to add congestion control 
feature to Saratoga so it can be used over links with 
competing traffic [6]. 

A rate-based PERL implementation of Saratoga is used as 
one of the protocols to compare with PEPs. 

4. HYPOTHESIS 
Our evaluation of PEPs versus modern file transfer 
protocols was limited to our particular operational 
environment, which is a private network with no competing 
traffic and fully bidirectional links.  The Global Hawk 
network is, for the most part, error-free, has a round trip 
time delay of approximately 600 ms and has a bandwidth of 
8 Mbps.  For completeness, we tested over a variety of 
delays and error-rates.   

We hypothesized the following outcomes:  

1. A PEP would provide no improvements for very 
command and control communications and interactive 
tasks using TCP as PEPs are really designed to improve 
throughput for bulk transfers.  

2. The Rate-based Saratoga implementation would 
perform better than any file transfers using PEPs or 
modern TCP implementations as this implementation of 
Saratoga assumes no loss due to congestion and 
implements no congestion control. 

3. In a large BDP environment, the PEP would perform as 
good as or better than TCP files transfers without a 
PEP. 

5. TESTS 
Our tests consisted of evaluating a number of TCP-base file 
transfer protocols with and without a PEP as well as telnet 
to simulate interactive and command and control traffic and 
Saratoga.  Also, we where curious to see how a PEP would 
handle traffic over secure shell (SSH) as the users often 
SSH into the system then run applications over the SSH 
tunnel.  Users also use Secure Copy (SCP), Secure File 
Transfer Protocol (SFTP) and remote synchronization 
(rsync).  Thus, we tested all of these protocols with and 
without a PEP for delays of 0, 100, 300 and 600 millisecond 
and bit-error-rates of 0, 10-7 and 10-5. 

The Space Communications Protocol Specification (SCPS) 
PEP base on the SCPS Transport Protocol (SCPS-TP) [7] 
was used.  SCPS-TP is a set of TCP options and sender-side 
modifications to improve TCP performance in stressed 
environments including long delays, high bit error rates, and 
significant asymmetries. 



 3 

6. TESTBED  

 

Figure 1: Testbed network diagram 

The testbed was comprised of 5 computers and 4 switches 
(Figure 1). Client A, a CentOS 5.4 machine running Linux 
kernel 2.6.18, was in the role of a computer being used by a 
PI during a mission.  Client A was using the Binary Increase 
Congestion control (BIC) algorithm [8]. PEP A, a CentOS 
5.5 machine running Linux kernel 2.6.18, was in the role of 
a transparent gateway device, which sat between Client A 
and the greater network. Emulator, a Knoppix 4.0.2 machine 
running Linux kernel 2.6.18-rc4, was acting in place of a 
satellite link [9]. PEP B, a CentOS 5.5 machine running 
Linux kernel 2.6.18 was acting as the aircraft side 
transparent gateway. Client B, an Ubuntu 10.04 machine 
running Linux kernel 2.6.32 was acting as an instrument 
controller on board the aircraft. Client B was using the 
CUBIC congestion control algorithm [10], which is enhance 
version of BIC. 
 
Client A was configured with a single Ethernet interface 
allowing it to get on to the 10.99.99.0/24 network as 
10.99.99.2.  PEP A, in acting as a transparent gateway was 
configured with two separate Ethernet interfaces, neither of 
which had an IP address. Emulator, in its role as a satellite 
link emulator also acted as a transparent gateway and was 
likewise configured with two separate Ethernet interfaces, 
neither of which had an IP address. PEP B, was also 
configured as a transparent gateway with two Ethernet 
interfaces and no IP addresses. Client B, in its role as an 
instrument controller, was configured with a single Ethernet 
interface with an IP address of 10.99.99.254 giving it access 
to the 10.99.99.0/24 network. All of the switching hardware 
was 100BASE-TX. 

For our purposes, bandwidth was clamped on Emulator to a 
nominal 8 Mbps with a ceiling of 10 Mbps allowing 128 KB 
bursts of data. This was accomplished using the Linux 
command ‘tc’ using the Hierarchical Token Bucket queuing 
strategy. Specifically, we allowed 8 Mbps data rates for 
constant connections; but connections that are just starting 
can burst a total of 128 KB of data at line rate and any data 
sent after that will be throttled down to 8 Mbps. The ‘tc’ 
command is part of the iproute2 suite of tools that comes 

standard with the NASA Channel Emulator Live CD used to 
emulate the satellite link during testing2[11], [12]. 

7. TEST RESULTS 
Baseline Tests 
TCP and UDP baseline tests were performed using nuttcp, a 
TCP/UDP network test tool [13].  

The UDP tests provided a baseline for data throughput and 
confirmed our bandwidth settings in the testbed. The UDP 
test showed that when we configured our testbed for 8 Mbps 
throughput with 10 Mbps ceiling rate and 128k bytes burst 
rate the maximum sustainable throughput measured was 
8.0069 Mbps. 

TCP Baseline 
All tests were run as single flow with full duplex links.  The 
satellite emulator bandwidth was set to 8 Mbps providing a 
sustainable UDP throughput rate of 8.0069 Mbps.  Packet 
size for all file transfer tests was 1500 Bytes with a 100 MB 
file transferred for each run3.  For all tests through the SCPS 
PEP, the PEP was configured for a 400 ms one-way delay 
(800 ms RTT), 10 Mbps bandwidth with a minimum value 
for the TCP retransmission time set for 800 ms, the RTT 
[14]. 

Telnet Tests 
The file transfer tests were run with the same settings as the 
TCP baseline tests except a large file was not transferred.  
The telnet tests were simply run to validate our initial 
assumption that a PEP would not noticeably improve the 
user experience for transactional communications.  This was 
confirmed via user experience. Measurable data was not 
taken to support this simple experiment. Rather, the operator 
experience was the defining measurement. 

File Transfer Tests 
The file transfer tests were run with the same settings as the 
TCP baseline tests. 

 
2 # tc qdisc add dev eth0 parent 1: handle 2: htb default 10 
# tc class add dev eth0 parent 2: classid 2:10 htb rate 8mbit ceil 10mbit 
cburst 128k 
# tc qdisc add dev eth1 parent 1: handle 2: htb default 10 
# tc class add dev eth1 parent 2: classid 2:10 htb rate 8mbit ceil 10mbit 
cburst 128k 
 
3 The transferred file was a 100 MB disk image. 



 4 

 

Chart 1: Throughput vs. BER for No Delay 

Chart 1 Shows the performance of various file transfer 
protocols with and without a PEP for zero delay for various 
bit error rates (BERs).  Note that performance with a PEP is 
worse than without a PEP. This is to be expected as a PEP 
simply adds overhead and processing for systems with low 
BDP. This is one end of the extreme. 

 

Chart 2: Throughput vs. BER for 600 ms RTT Delay 

Chart 2 shows the other extreme.  This graph shows 
performance results for a system with a RTT of 600 ms 
providing the largest BDP considered.   

In chart 2 we see a PEP helping ever so slightly for TCP-
based file transfers at 1.0 E-5 BERs.  At near error-free, the 
PEP is not showing improvements.  This is due to two 
factors: there are few losses and modern TCP aggressive 
congestion control schemes allow the congestion window to 
remain stable when only a few packets are lost as well as 
keeping the system from self-congesting. Casing self-
congestion was the case with older forms of TCP where 

once the bandwidth threshold was reached, the rate was 
halved and a very conservative linear increase ensured4.  

In chart 2 one can see that generic ftp performs quite poorly 
over a 600 ms RTT delay even with no errors.  This is due 
to FTP having a compiled in default buffer limiting the 
throughput performance to approximately: 

Throughput = (FTP Buffer) / RTT 

Chart 3 shows the performance of various file transfer 
protocols versus RTT delay for a BER of 1.0 E-5. 

Looking at chart 3, one can see that Saratoga is consistent 
across delay and BER and has little fall off in performance 
at 1.0 E-5 BER.  This is expected, as Saratoga is a negative 
acknowledgement (NACK) UDP-based protocol whose 
performance should be independent of delay as well as 
relatively low BERs.  At high BERs, performance for any 
protocol will fall off as the packet losses increase and 
retransmissions increase. Furthermore, packet loss is related 
to the BER, the BER characteristics (i.e. bursty versus 
evenly distributed) and the packet length. 

 
Chart 3: Throughput vs. RTT Delay for BER 10-520 

Chart 3 also shows that a PEP improves the performance of 
FTP, but has little effect (and actually worsens) SCP for 
BERs up to 1.0E-5 

Figures 2 through 9 are time-sequence plots of TCP file 
transfers over an 8 Mbps bandwidth and 600 ms RTT delay 
resulting in a BDP of 600,000 bytes. These plots were 
created using tcptrace [15], tcpdump [16], and xplot [17]. 
The markings on these plots indicate the following: 

• Green Line keeps track of the ACK values received 
from the other endpoint.  

• Yellow Line tracks the receive window advertised from 
the other endpoint. (It is drawn at the sequence number 

 
4 This congestion avoidance algorithm is known as additive 
increase/multiplicative-decrease (AIMD). 
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value corresponding to the sum of the acknowledgment 
number and the receive window advertised from the last 
ACK packet received.)  

• Little Green Ticks track the duplicate ACKs received.  
• Little Yellow Ticks track the window advertisements 

that were the same as the last advertisement.  
• White Arrows represent segments sent. The up and 

down arrows represent the sequence numbers of the last 
and first bytes of the segment respectively.  

• Red Arrows (R) represent retransmitted segments with 
the up and down arrows similarly representing the 
sequence numbers of the last and first bytes of the 
segment.  

 

Some of the important characteristics shown are the TCP 
window size (denoted by the vertical distance from the 
green line to the yellow line); packets sent (denoted by 
vertical white lines) and retransmitted packets (denoted by 
vertical red lines). 

For the FTP transfer without a PEP as shown in figure 2, the 
advertised receive window size is approximately 12,000 
bytes. Such a window size is far below the BDP of our link 
(i.e. 600,000 bytes). This is also the case for FTP between 
the client and the PEP [Figure 3].  The SCPS PEP was set 
for a window size of 2,000,000 bytes as recommended in 
the SCPS user guide.   

 
Figure 2: 1 second snippet of FTP w/o a PEP 

Figure 2 shows a 1 second snippet of the TCP sequence 
graph for a 100 MB FTP transfer over a high latency (600 
ms RTT delay) and 0.001% BER network without a PEP.  
Note the white marks at the beginning 20:50:20:000 
timestamp have reached the maximum receive window and 
had to wait to resume until the receive window increases 
due to received ACKs at 20:50:20:600.  Thus, the receive 
window flow control is throttling back the transmissions and 
the 600 ms RTT delay is slowing recovery time.  The result 
is that our FTP application (NcFTP 3.2.2) has a maximum 
throughput of approximately 730 kbps at 600 ms delay 
regardless of BER. 

 
Figure 3: 1 second snippet of FTP transfer captured 

between the client and the PEP 

  

 
Figure 4: 1 second snippet of FTP transfer captured on 

the satellite emulator after the PEP 

Figures 3 and 4 show the TCP sequence graph for 100 MB 
FTP transfer using a PEP. Figure 3 is the TCP trace  
captured between the client and the PEP, while Figure 4 is 
the TCP trace  captured on the Wide Area Network (WAN). 
Note the differences lie in the TCP window size and the 
presence (or absence) of retransmitted packets. Figure 3 
shows that the TCP window size remains quite small as seen 
by the client. However, we see in Figure 4 that that the TCP 
window size on the WAN side of the PEP is much larger 
than in either Figure 2 or 3. This shows the effect of the 
PEP, allowing clients to maintain small TCP window sizes 
while maintaining efficiency on high latency WAN links by 
increasing the TCP window size. 
 
Figures 5, 6, 7 and 8 show similar time sequence graphs for 
an SCP file transfer over the same 600 ms RTT delay, 
0.001% BER network.  
 
Figure 5 shows a 1 second snippet of an SCP file transfer 
without a PEP. Compared to Figure 2 we see that the TCP 
window size is much larger than for the FTP application. 
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Figure 5: 1 second snippet of SCP file transfer w/o PEP 

Figure 6 shows a 1 second snippet of an SCP file transfer 
using a PEP, captured between the client and the PEP. Here 
again, we see that the TCP window size between the client 
and the PEP remains small as with utilizing the PEP for the 
FTP transfer. 

 
Figure 6: 1 second snippet of SCP file transfer captured 

between the client and the PEP 

Figure 7 shows a 1 second snippet of an SCP file transfer 
captured on the WAN side of the PEP. Again, as with FTP 
we see that the WAN side shows a large TCP window. Of 
note, we also see a number of retransmissions and duplicate 
ACK packets (as indicated by the red marks and the green 
tick marks respectively). 

 

Figure 7: 1 second snippet of SCP file transfer captured 
on the WAN after the PEP 

 Figures 8 and Figure 9 illustrate two of the ways SCP 
increases file transfer efficiency on high latency and high 
BER networks. Figure 8 shows SCP increasing the TCP 
window size at the beginning of the file transfer. In the 
portion of the trace shown, the receive window size grows 
from approximate 220,000 bytes to 1,000,000 bytes. Figure 
9 shows the use of the TCP selective acknowledgments 
(SACK) option (denoted by the purple marks). With 
selective acknowledgments, the data receiver informs the 
sender about all segments that have arrived successfully, so 
the sender need retransmit only the segments that have 
actually been lost [18]. 

 
Figure 8: Increasing TCP window size for SCP file 

transfer w/o a PEP 

 

 
Figure 9: SCP making use of the TCP SACK option 

 
8. SUMMARY AND CONCLUSIONS 

A NACK-based file transfer protocol such as Saratoga will 
out perform TCP-based file protocols that use modern TCP 
implementations or a PEP.  This was the expected result 

A PEP designed to improve TCP performance over large 
BDP link will not improve interactive communications of 
single packet transfers. This also was the expected result. 

For our particular system, a high BDP link with no 
competing traffic and very few errors, the self-tuning 
capabilities of modern TCP implementation provide nearly 
identical performance to deployment of a PEP and require 
no configuration or tuning.  The SCPS PEP (and most if not 
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all other PEPs) must be configured for the BDP 
characteristics of the link they are compensating for.  If the 
link BDP changes, the PEP configuration must also be 
updated. 

9. THE WAY FORWARD  
The mode of operations continues to evolve with each 
science mission relative to the command, control and data 
distribution of the Global Hawk science payload. The 
Principal Investigators are becoming more comfortable with 
controlling their specific science instruments while perhaps 
turning control of data retrieval over to the overall payload 
control personal.  New concepts are emerging whereby the 
person with overall responsibility for science payload 
control would transfer the large data sets from UAV to 
ground. The principal investigators and their teams can then 
access that data from anywhere using standard Internet 
protocols. 
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