
Local Management in DTN2:

DTN2's internal state mapped to the DTN MIB

DTN2's internals:

API, bundle, discovery, interface, link, prophet,
'bundle' should also include bundles-list – per-b
destination, custodian, forwarding log, etc.)

around 160 variables
some of this state is ignored by the MIB spec.

registration, route, security, storage
bundle information (e.g. source,

DTN-2 modifications:

need to support “get” and “set” operations
use the existing remote terminal interface (teln
“set” operations can just leverage existing com
for “get” a new command was added to the Ufor get , a new command was added to the U

created small set of classes to marshal DTN2's

throughout the server code base, marshaling m
required

generates JSON outputgenerates JSON output

[example]

net port 5050)
mmands
I command setI command set

s internal state

methods (nm_dump) were added to classes as

mgmt console
browser

HTTP(s)

web serverweb server
cgi backend
dtn client

IP LANIP LAN

DTN E

TCP (CL)

DTN node

DTN bundles

DTN

DTN bundles

EP
snmpd
snmp agent
dtn client

DTN2 issues:

fragile build process
inconsistent use of autoconf vs. hand crafted
hidden dependencies between DTN2 and O
symlink “oasys” in DTN2symlink oasys in ~DTN2
autoconf claims you can tell it where other d
dependencies on old packages, autoconf ma
e.g. berkeley db
broken bits – client scripting APIs
e.g. perl module calls non-existing routines
SWIG regenerated output is different from w
compile warningscompile warnings
e.g. bluetooth CLA compare/signed vs. uns
printf format integer size mismatches (fixed

no self testno self-test

package building process is semi-broken (De

littl t ti t id f l li di tlittle testing outside of popular linux distros
osx/xcode [10.6 broken?]
*BSD

d Makefiles
OASYS

dependencies live; often this silently fails
acros don't quite work

what is in the repository

igned
)

ebian)

SNMP agent issues:

Net-SNMP agent API best supports V1 sem
meaning walking a table requires a separate
we don't want to have that translate into a se
SNMP “get” operationSNMP get operation
caching, tradeoff – efficiency vs. currency
caching reduces the chance of “atomicity” is
stale data might be a problem
v1 (lack of) security is not a problem – only r

Net-SNMP is the best choice
limited choice of alternative SNMP daemon slimited choice of alternative SNMP daemon s

SNMP agent pseudo-code:

received “get” request
check local cache age
if local cache is staleif local cache is stale
fetch current state from dtn demon
update local cache

fetch requested info from local cachefetch requested info from local cache
give it to the invoking snmpd session handle

antics
transaction for every variable

eparate DTN2 “get” operation per

ssues, inconsistency

running on loopback

softwaresoftware

er

JSON
serial representation of dataserial representation of data
standard, RFC 4627
good fit for representing network manageme

primitive data types: number string booleanprimitive data types: number, string, boolean
compound data types: objects, arrays
objects are like STL's std::map or perl's hash
members of arrays and objects can be any d

array: [“Nervous Energy”, "Bora Horza Gobu
object: { “gold”:1.62, “avocado”:6.022e23, 42

SNMP tree <=> JSON object
SNMP table <=> JSON array
SNMP scalar <=> member of a JSON object

nt information

null, null

hes
ata type (e.g. nested arrays, etc.)

ushul”, “Irregular Apocalypse”]
2:“earth” }

DTN management protocol:

all traffic is prefixed with a 32 bit field – the upp
lower half (in this case) indicates JSON encodi

requests: get setrequests: get, set
replies: data, diagnostic

request attributes: auth, id, name
set additional attributes: value, ack
reply attributes: id, value
diagnostic additional attributes: text

example request:

[{ "op":"get", "name":"1.3.6.1", "auth":"...", "id":1
{ "op":"get" "name":"some variable name" "a{ op : get , name : some_variable_name , a
{ "op":"get", "auth":"...", "name":["var1", "var2",
{ "op":"get", "name":"dtn.TODO_mib_var_nam
{ "op":"set", "name":"dtn.TODO_mib_var_nam

]]

per half indicates the protocol version, the
ng

10000023 },
auth":" " "id":10000024 }auth : ... , id :10000024 },
, "var3"], "id":10000024 },

me", "auth":"..." },
me", "auth":"...", "value":1234, ack=true }

example reply (ideas):

[{ "op":"data", "name":"var11", "value":1234,
{ "op":"data", "id":554433, "value":[

{"name":"var1", "value":1234},
{"name":"var2" "value":"disabled"}{"name":"var2", "value":"disabled"}

]
},
{ "op":"data", "id":554433, "value":{

"var1":1234,
"var2":"disabled"

}
},},
{ "op":"data", "id":554433, "value":[

["var1", 1234],
["var2", "disabled"]

]]
}

},
{ "op":"diagnostic", "id":10000024, "value":2

]]

"id":10000023 },

2, "text":"insufficient privilege" }

security issues:

“auth” only provides authentication

fine-grained access control
per variableper variable
get/read
set/write
access frequency
range (for set)
valid times
etc.

also require confidentiality, integrity
useless if a third party can sniff the authenticaation key

IP LAN

DTN EP

SNMP
CiscoSy
stems

SNMP

