
Hassle-Free DTN Contact Management

Jim Wyllie Wesley M. Eddy Joe Ishac Will Ivancic
Shawn Ostermann

December 20, 2007

Abstract

While the DTN Bundle Protocol in RFC 5050 specifies a format for exchanging messages
between DTN Bundle Agents, It does not specify the operational aspects of configuring those
Bundle Agents and bootstrapping them with sufficient information to detect and converse with
other Bundle Agents. To date, contacts between Bundle Agents were either pre-configured by
hand, or have been automated through one-off mechanisms that were admittedly more quickly
built than carefully designed. This paper describes the design of a general-purpose means for
Bundle Agents to dynamically and automatically discover one another and configure the prop-
erties of current contacts and predicted future contacts. Through demonstration and analysis,
we show that this discovery mechanism adds operational viability and scalability to the Bundle
Protocol. We also discuss the relevant security concerns and suggested mitigation.

1

Contents

1 Introduction 3

1.1 Background . 3

1.2 Existing Solutions . 3

1.3 Problems with Existing Solutions . 3

1.4 Relationship to Routing . 4

2 General Bundle Agent Discovery Mechanism 4

2.1 Design Goals . 4

2.1.1 Domain-Independent and Domain-Specific Pieces 5

2.1.2 Capabilities of BAs . 5

2.1.3 Use of SDNVs . 6

2.1.4 Third-party Configuration . 6

2.2 Other Design Decisions . 7

2.2.1 BA Discovery Data in the Payload Block 7

2.2.2 Included and Excluded Capabilities . 7

2.2.3 Entry Updates Through Time . 8

2.2.4 Definition of a ”neighbor” . 8

2.3 Syntax . 9

2.4 Semantics . 9

2.4.1 Convergence Layer Capabilities and Advertisements 9

2.4.2 Sending BA Discovery Bundles . 10

2.4.3 Receiving BA Discovery Bundles . 10

3 Experimental Evaluation 11

2

3.1 Test Results and Analysis . 11

3.2 Implementation Details . 11

3.3 Theoretical Background Bandwidth . 11

3.3.1 All static nodes, no connection loss . 12

3.3.2 Start with 4 nodes, bring up 4 additional nodes 12

3.3.3 Random Connection and Disconnection Schedule 13

4 Related and Further Work 14

5 Security 14

5.1 Security in a Trusted Network . 14

5.2 Security in an Untrusted Network . 15

6 Conclusion 15

3

1 Introduction

1.1 Background

The Delay/Disruption-Tolerant Networking (DTN) architecture describes an overlay network of
Bundle Agents (BAs). Each BA manages the forwarding of bundles during contacts with other BAs
and queues bundles between contacts. As the bundle format and basic forwarding operations were
designed, it became clear that an automated means for BAs to discover neighboring nodes, their
neighbors’ capabilities, and contact times was needed. This document describes such a mechanism
as well as the mechanism’s relationship to potential DTN routing protocols.

This exchange of contact information can be useful even when contact properties are known in ad-
vance. For example, it can be used to verify the pre-configured information or reveal discrepancies
in contact properties (expected duration, expected future contact times, etc.). As most proposed
DTN deployment environments include a notion of ”contact windows,” these could be easily veri-
fied and updated using this mechanism.

1.2 Existing Solutions

Due to the obvious convenience and scalability of dynamic BA configuration, some previous solu-
tions have been proposed and implemented.

The DTN reference implementation, DTN2, maintained mechanisms for automatic discovery over
Bluetooth, Bonjour, and IP. These mechanisms use out-of-bundle communication; for instance, IP
discovery used a separate TCP/UDP port and did not use bundles at all. In all aforementioned cases,
the discovery mechanism created a new convergence layer link without creating a corresponding
Bundle route (as that information was not included). Though useful in identifying links, it does
not provide any functionality for adding routes. Routers are crucial to not only sending bundles,
but also creating the building blocks to a future routing protocol.

1.3 Problems with Existing Solutions

DTN2’s implementation of bundle agent discovery is typical of most solutions where practicality
and ease of implementation are more important than research and generality. The out-of-bundle
communication mechanism means that the solution is incompatible with other BA implementa-
tions, as the method follows no standards. This leads to ”walled” domains, where different imple-
mentations cannot discover one another. This stifles cross-implementation communication, which
in turn clearly harms DTN adoption.

Furthermore, it has no provisions for security, interoperability, or generality among convergence
layers. As many proposed deployments of DTN are in sensitive environments, such as military

4

warzones and space communication, security compromises in these spaces can lead to catastrophic
failures with high cost in money and loss-of-life. Consequently, a solution is needed which can use
trusted, uniform, and well-designed security.

Also, as no standard convergence layer system exists, old discovery systems are completely sepa-
rate in both design and implementation. For instance, Bluetooth, Bonjour, and IP discovery all had
to be rethought and reimplemented. Obviously, common points exist between all three solutions:
remote EID, convergence layer address, contact window, capabilities, etc. Redesigning each sys-
tem harms scalability and can introduce subtle buds in design. Uniform BA discovery, however,
can solve many design problems with a single design, and simplifies its adoption to new systems.

1.4 Relationship to Routing

While the mechanism described within this document is specifically designed to convey peer-to-
peer contact information between two BAs that are adjacent in the overlay topology, it also can be
used as one of the building blocks to enable multi-hop routing decisions between BAs. To clarify,
consider a typical Internet routing protocol (e.g. OSPF) which has two main types of messages:
(1) ”Hello” messages used to automatically discover connectivity with other directly-reachable
peers, and (2) messages used to update databases of connectivity information for further hops. The
mechanism described in this document satisfies the first function (”Hello” messaging) within a
DTN overlay by allowing Bundle Agents to automatically discover other nodes to which they can
directly forward bundles.

After undergoing neighbor discovery, Bundle Agents have useful information which can be used
to make routing decisions. The mechanism’s ability to convey an agent’s capabilities can be used
later by a routing protocol to make next-hop decisions to other destinations. For instance, a routing
protocol could convey the discovered capabilities in the routing advertisement, and give guidelines
to using this information to make informed routing decisions. Further work in this area is outside
the scope of this document.

2 General Bundle Agent Discovery Mechanism

2.1 Design Goals

DTN, as defined in RFC4838, is planned for use in many different environments. These environ-
ments can include any of the following:

• RTT delays measured in minutes or hours instead of milliseconds

• Bit-error rates can be as high as 10% of bits; may be either bursty or random

5

• Very high connection asymmetry: connection may even be unidirectional.

• Low and potentially random uptime

Our main protocol design goals and requirements were, therefore:

1. BA discovery had to be conceptually compatible with as many DTN environments as possi-
ble; preferably all of them.

2. BA discovery had to be easily implementable in as many environments as possible; prefer-
ably all of them.

3. BA discovery had to provide as much information as possible needed for later routing.

4. BA discovery had to be easily extensible as the bundling protocol may change and increase
dramatically before widespread deployment.

5. BA discovery had to allow for third-party uptime configuration, as many current deploy-
ments are centrally managed.

2.1.1 Domain-Independent and Domain-Specific Pieces

These highly disparate environments and ”universality” requirements for deployment greatly com-
plicate BA discovery. For example, BA discovery on sensor devices in a technologically-challenged
area should proceed much differently from BA discovery of deep-space probes: though both are
considered for DTN, they have little in common. However, as stated earlier, some information is
needed through all BA environments where other pieces are specific to the domain in which the
BA is deployed. Therefore, BA discovery is split into two pieces: a ”domain-independent” piece
(that which is nearly ubiquitous across all of BA discovery) and a ”domain-specific” piece (which
is re-thought for each domain of use).

In practice, domain-independent pieces communicate contact information and capabilities of the
bundling layer, which is universal to all environments. Domain-specific pieces communicate con-
tact information and link-capabilities for a specific convergence layer, as well as any additional
information which may be relevant for discovery, in a specific environment.

Domain-independent and domain-specific pieces satisfy the compatibility and implementation re-
quirements.

2.1.2 Capabilities of BAs

Capabilities describe, basically, ”things a Bundle Agent can do or what a Bundle Agent is.” Though
some are specific to the environment of deployment, some capabilities are inherent to virtually

6

all bundle agents. To facilitate future routing decisions, these BA capabilities can be included
with the discovery messages. Currently, the capabilities include supported convergence layers
and understood EID schemes. Capabilities can be omitted in discovery messages for any reason,
including not knowing them on transmission and reduction of message size.

The inclusion and transmission of capabilities as part of the advertisement can be used to make
routing decisions, and therefore satisfies the requirement that advertisements advance toward DTN
routing.

2.1.3 Use of SDNVs

The bundling protocol makes extensive use of SDNVs, which trade an average of 1/8 bit efficiency
and slight processing overhead for theoretically limitless expansion of fields. Following that exam-
ple, BA discovery also uses SDNVs where appropriate. This allows the protocol to scale with new
demands, and combined with domain-specific flexibility, satisfies the requirement that discovery
be extensible.

2.1.4 Third-party Configuration

Third-party configuration means that a BA can specify the contact window between two other BAs.
An example of third-party configuration is shown below.

Central Server

Client A Client B

Connection Specified by Central Server

Discovery Bundle
(Info about B)

Discovery Bundle
(Info about B)

Figure 1: Example DTN Network Setup. All computers act as Bundle Agents.

In this example, all communication windows are managed from a centralized server. The server
sends discovery bundles to clients, dictating when they can communicate. There may be multiple

7

central servers, and multiple clients listening to those servers. It may function in conjunction with
normal BA discovery procedures.

Third-party discovery was selected because it resulted in little overhead and vastly simplified cen-
tralized network management. For instance, a base can send general uptime criteria to the central
server in the field, which can then construct and send BA discovery bundles to all of the clients it
manages. This allows for distributed management and requires fewer bundle hops, decreasing the
probability of using a delayed and potentially weak link.

2.2 Other Design Decisions

Certain other decisions and their rationale are worth noting.

2.2.1 BA Discovery Data in the Payload Block

After a discussion on the DTN mailing list, all discovery data (including both domain-independent
and domain-specific parts) is included in the bundling payload. This was done to reduce the com-
plexity of the bundling protocol and to avoid a proliferation of bundle blocks (which was the
alternate location). It also made implementation easier: using the payload, BA discovery can be
implemented either in the DTN daemon (as was done with our DTN2 implementation) or as an
external application. If it were written as a block, it would require a complex and unscalable inter-
face to allow creation of the bundles by applications, or force implementation within the protocol
stack.

2.2.2 Included and Excluded Capabilities

The current list of included capabilities was whittled down from a much larger list including link
congestion, storage size, battery life, maximum contact time, and others. We included capabilities
into the BA discovery protocol if they were both relatively static during the time period of adver-
tisement (which excluded congestion and storage properties) and useful to the maximum number
of bundle agents (excluding battery life and others).

The two sections of capabilities that were kept, grokability of URI schemes and convergence layers
understood, made connections significantly easier. Capabilities are implemented using SDNVs,
and can be easily expanded in the future to include more information. As is, knowing ”supported
schemes” aids in routing and ”convergence layers supported” can reveal other capabilities of the
link and the connected nodes.

8

2.2.3 Entry Updates Through Time

As all BA discovery bundles have time intervals of validity, a BA could receive many BA discovery
bundles for overlapping time periods. This necessitated a standardized advertisement update proce-
dure. It works as follows: when an advertisement arrives, a BA must delete all advertisements that
share the same source / destination endpoint IDs and overlap any part of the new advertisement’s
time window. This allows for atomic routing updates and changing connections. It also provided
an easy way to obsolete old entries without querying a BA for current routing information.

2.2.4 Definition of a ”neighbor”

On most networks, the definition of a ”neighbor” is rather trivial: it is that which can be accessed
without routing. That definition does not readily apply to DTN, as no routing mechanism has been
written and some nodes have unidirectional contact. Therefore, we defined the following terms:
neighbor, pitcher, and catcher.

A ”neighbor” is a pairing of nodes which can communicate bidirectionally over exactly one conver-
gence layer without requiring forwarding through another BA. For example, imagine the following
scenario:

A CB

TCP Serial

Figure 2: Example DTN Network Setup. All computers act as bundle agents.

In this setup, A and B would be considered neighbors, as would B and C. Those nodes can com-
municate directly without forwarding through another BA. However, A and C are not neighbors,
as A and C cannot communicate using exactly one convergence layer.

The terms ”pitcher” and ”catcher” refer to two nodes in a BA connection: these two nodes represent
neighbors in absolutely every way except that the communication may be unidirectional. The node
which can send information is referred to as the ”pitcher,” while the receiving node is the ”catcher.”
If both BAs are full neighbors, both BAs can be pitchers and catchers.

9

2.3 Syntax

All parts of BA discovery are contained in the payload block of a bundle. The bundle may be
addressed to either the discovery handler of a node, or a generic ”dtn:discovery” to refer to all
agents which receive the bundle and are willing to accept dynamic neighbor information.

All BA discovery bundles contain the following domain-independent portion, containing the fol-
lowing fields:

Table 1: Domain-independent BA discovery format
Version Field representing the current version of the domain-

independent BA discovery bundle.
Autodiscovery Flags SDNV-encoded flags describing various aspects of the au-

todiscovery header.
Contact Start Time Beginning time for which this communication window is

valid.
Contact End Time Ending time for which this communication window is valid.

Pitcher EID The Endpoint ID of the ”pitcher” in the connection.
Catcher EID The Endpoint ID of the ”catcher” in the connection
Capabilities SDNV indicating the capabilities of the pitcher

Domain-independent Identifier Identifier to indicate the format of any domain-independent
data

If domain-specific data is present in the BA discovery bundle, it is included directly after the
domain-independent data. The format of that data is dictated by the value of the domain-independent
identifier.

Depending on the autodiscovery flags, some of the above fields may be omitted if they are not
known or to decrease the size of the bundle.

2.4 Semantics

2.4.1 Convergence Layer Capabilities and Advertisements

Due to the nature of an overlay network, autodiscovery may take place over many different conver-
gence layers. In addition, depending on the convergence layer used, convergence layer discovery
might be necessary prior to bundling discovery. For instance, when using Bluetooth as a conver-
gence layer, paired devices must undergo device discovery and service discovery before encap-
sulated data (such as the autodiscovery bundle) can be sent. Therefore, initiating autodiscovery
over Bluetooth for previously unknown devices will require cooperation between device/service
discovery and the bundling layer. If any data obtained in service discovery is relevant, it could be
communicated as domain-specific information in the discovery bundle.

10

As another example, for the common terrestrial Internet protocols TCP and UDP, discovery over
TCP implies that the devices have bidirectional communication where discovery over UDP can
use unidirectional communication and multicast. TCP requires handshaking prior to bundle com-
munication; UDP does not.

Certain capabilities of a convergence layer node may be relevant in the bundling autodiscovery
process. For instance, when using TCP, it may be relevant to communicate the round-trip time
(RTT) to the bundle layer as it may impact routing decisions. Extra features like this can be
included as part of a domain-specific protocol.

Therefore, this section specifically describes processing only from a bundle-layer standpoint, with
suggestions for widely popular convergence layers. Exact mechanisms for executing bundle-layer
autodiscovery over convergence layers is outside the scope of this project.

2.4.2 Sending BA Discovery Bundles

BA discovery bundles may be sent at any time. BAs on Bandwidth-limited links will likely send
fewer bundles with larger contact windows; BAs on large-bandwidth links will likely send more
bundles with smaller windows. The latter is preferable: detection of a ”down” link simply due to
contact window expiration will happen sooner.

Decentralized networks may make use of a convergence layer’s multicast or broadcast feature to
advertise on a link, similar to neighbor discovery in many other protocols. As an example, our
DTN2 BA discovery implementation uses UDP multicast to discover other links.

2.4.3 Receiving BA Discovery Bundles

When receiving BA discovery bundles, they should be processed before other bundles as received
bundles may require the connection which would be created by the received discovery bundle.
When receiving BA discovery bundles, the BA should observe the router update semantics as
defined above.

If the received BA discovery bundle is addressed to dtn:discovery, it may want to send a return
discovery bundle if bidirectional communication is possible and to let the sender know of the
receiver’s presence on the network. This may not make sense for all environments, so it is not
mandated.

11

3 Experimental Evaluation

All experiments were conducted on 8 DTN2-enabled nodes, connected via 10MB hub, running
Ubuntu Linux. Each node was configured identically, advertising their own address on the network.
Each BA discovery bundle was 150 bytes on-wire; in other BA discovery scenarios,

3.1 Test Results and Analysis

Theoretically, when a new node joins the network, it will have full neighbor information in less
than or equal to the beacon transmit interval. Though beacons may be lost due to the usual causes
of dropped packets on networks, we did not experience any loss problems in testing.

Each BA discovery node in our tests was 150 bytes long; discovery bundles could be smaller if
optional fields were omitted.

3.2 Implementation Details

BA discovery, as implemented in DTN2, handles not only independent BA discovery bundles,
but also has an experimental daemon which uses UDP multicast beacons to discover neighboring
nodes. The beacons are picked up by all subscribers to the multicast group and processed as on-
wire bundles. This allows reuse of the existing bundle processing mechanisms.

The system was implemented so that any software, internal or external to the daemon, could send
discovery information to the discovery address. Therefore, implementing new convergence-layer
discovery mechanisms can be done with maximum design flexibility.

After considering the trade-offs as listed earlier, advertisements are sent frequently (default con-
figuration is 20-second intervals) with short expiration times (default is 3 minutes). Therefore, a
node would have to miss nine consecutive beacons to lose connectivity. Loss rates that high are of
negligible probability for a functioning connection in our test environment.

3.3 Theoretical Background Bandwidth

Clearly, as BA discovery sends bundles on the convergence layer, extra ”background” bandwidth
is consumed by the network. In general, background bandwidth may vary based on the size of any
accompanying domain-specific data or varying lengths of the domain-independent SDNVs. Our
domain-specific data was 6 bytes. Length variation due to longer or shorter SDNVs should be
minimal; only 1% to 3%.

When using UDP multicast, all clients will send two IGMPv3 UDP multicast packets to advertise

12

their subscription to the multicast group and one on daemon shutdown to unsubscribe. In our
tests, each IGMPv3 message was 60 bytes. It has been omitted from analysis as it is a ”one-time”
network cost, instead of a ”recurring” bandwidth cost.

Table 2: Link Overhead for IP BA Discovery
Interval (sec) Number of Clients on the Network

– 4 8 16 32 64
1 600 1200 2400 4800 9600
5 120 240 480 960 1920

20 30 60 120 240 480
60 10 20 40 80 160

(All values are in bytes/sec)

3.3.1 All static nodes, no connection loss

Our first test compared static configuration against BA discovery with eight nodes, brought up at
once with no network interruptions. This is the weakest scenario for dynamic discovery, as all
contact information is known at runtime and doesn’t change. Regardless, we found BA discovery
to be faster and more guaranteed: it required less hand-configuration, which is prone to human
error.

Traffic due to BA discovery came to 55Bps; near the theoretically-determined 60Bps.

3.3.2 Start with 4 nodes, bring up 4 additional nodes

Next, we tested starting with half of our bundle agents running at the start, and bringing up 4 ad-
ditional fully-connected nodes during runtime. From an administration viewpoint, BA discovery
clearly led to faster and more scalable convergence. When testing without dynamic configuration,
we had to manually add one convergence layer link and one bundle route for each running node,
leading to a linear increase in hand-configuration as demonstrated in the following graph. Bring-
ing up the nodes required considerable typing overhead and double-checking. Furthermore, this
was with the optimal startup scenario for manual configuration, allowing half of the nodes to be
configured prior to runtime. Bringing up new nodes in random order would require full manual
configuration at startup.

The time taken for manual configuration of the additional nodes can be seen in the following
graph. Clearly, configuration time is heavily dependent on typing speed and other human factors;
however, it illustrates how manual configuration in even low-variance environments is completely
impractical.

In contrast, BA discovery required no manual configuration at all aside from distribution of a single
configuration file. Full connectivity only took the length of the advertisement interval; in our tests,

13

 0

 50

 100

 150

 200

 250

 5 6 7 8

T
im

e
to

 fu
lly

 c
on

ne
ct

 n
od

e
(s

ec
on

ds
)

Node # added to the network

Configuration of 4 fully-connected DTN2 Nodes

Manual
Discovery

20 seconds. It also did not increase with the size or number of links in the network.

Though the link footprint of BA discovery grew with each additional node, it was dwarfed by the
potential link utilization of configured nodes. For example, if BA node 8 needs to send important
information to BA node 1, it would take far longer to finish with static configuration: due to the
extra delay of 206 seconds to establish connectivity, it would take an extra 206 seconds to transmit
the data. Any link which experienced worse connectivity after adding the additional 55Bps on
the network would have to be impractically microscopic and congested. On all links where TCP
and UDP are used as convergence layers, BA discovery yields better scalability in a non-static
environment.

3.3.3 Random Connection and Disconnection Schedule

Mirroring a set of sensors, nodes were brought up and down on a random schedule with a change
made every 15 seconds. We then monitored the uptime traffic during this time in addition to
convergence / drop time for links.

Disconnecting the nodes had a high delay with our setup. For instance, the 20-second convergence
time was not optimal and resulted in between 180 to 200 seconds of lost communication (20 before
all other nodes knew of this node’s presence, and between 160 and 180 seconds where nodes still
thought the now-dark node was connected). This was fixed by changing the advertisement interval
to 3 seconds, with an expiration time of 8 seconds.

The following table illustrates how this affected lost communication and background bandwidth.

Table 3: Network Characteristics of Faster Convergence
Interval (sec) Bandwidth (Bps) Lost Connectivity (sec)

20 55 180–200
3 374 8–11

14

Manual configuration was impossible with this setup. Manually maintaining the links for eight
nodes required far too much typing and not enough time to verify that links were correct. With
random connections, manual configuration is not feasible.

4 Related and Further Work

For rapid development, some shortcuts were taken in the implementation of the BA discovery
system. To maintain the cleanliness and structure of the DTN2 code, these shortcuts need to be
removed before the system should be integrated in the DTN2 reference implementation. None
of these changes will change the on-wire representation of BA discovery; backward and forward
compatibility will be maintained during that process.

In addition, all BA discovery code in DTN2 needs to be ”torture-tested” to ensure its robustness in
all deployments.

We tested BA discovery on loosely simulated networks to get rough metrics on BA discovery
functionality. Much more testing is needed on different convergence layers with vastly different
characteristics. This includes the other convergence layers supported by DTN2 (currently, only
Bluetooth) as well as testing over likely future protocols on long delays, such as Saratoga and LTP.

5 Security

Nearly all threats that apply to other neighbor discovery protocols apply to DTN neighbor discov-
ery. As suggested in RFC3756, many of these are solved by ensuring a ’trusted’ network. Networks
that are not trusted are subject to different limitations (and expectations), so we deal with probable
attacks and mitigation for each network separately.

5.1 Security in a Trusted Network

Unlike general networking in the Internet, in DTN scenarios, there are many cases where a ’stranger’
on the network is an unexpected condition. For example, sensor networks in poorly-connected en-
vironments are often controlled by a single organization which grants connection only to approved
nodes. This may be implemented through link-layer encryption, keying of spreading sequences, or
other means. Currently, as these two deployment environments are the two major proposed uses
for DTN, securing the ’trusted’ network against attack deserves further consideration.

The most likely attack on a trusted network is an attack where a node infiltrates a closed network,
masquerading as a trusted node using a trusted address. To mitigate this attack, one could pre-
share symmetric keys and use encryption with nodes that are allowed on the closed network. As

15

BA discovery uses standard bundle procedures, it is covered by the DTN security extensions if
necessary. All aspects of neighbor discovery, therefore, could be encrypted using these keys. In
this manner, no nodes lacking the pre-shared key (and, by extension, permission to use the network)
can communicate on the network.

In nodes that can afford the overhead of public-key cryptography, The DTN security extensions
also support X.509 certificate processing. This would be more desirable for nodes that may com-
municate with many entities (such as the international space station) that each require separate
keys (such as member nations with varying levels of cooperation). If necessary, this would also
help protect the system from a single point of failure as in the pre-shared key system, only one
pre-shared key needs to be compromised to compromise an entire system.

5.2 Security in an Untrusted Network

Though many currently proposed deployments of DTN involve closed networks, future DTN net-
works may include untrusted public networks. For example, a DTN node on a public transportation
system may send a bundle to a curbside receiver which would then forward it through the network.
As part of public transportation, it is impossible to guarantee trust to nodes on the network, so the
above system will not work.

In this environment, likely attacks generally are some variation of man-in-the-middle attacks. For
instance, a PDA on the public transportation system may masquerade as a router and sniff traffic or
deny it altogether. As stated in RFC4251, there is no known way to prevent these attacks outright.

If security is desired in such a network, one could use a ’fingerprint’ system combined with public-
key cryptography. If a node considers the above attack serious enough, it can require public-key
cryptography as provided in the DTN security extensions, storing the fingerprint of the server’s
public key. In a man-in-the-middle attack, the fingerprint would change, and the user could be
notified in an appropriate way. This system is very similar to the fingerprinting system currently in
widespread use in SSHv2, defined in RFC4251.

Due to the potentially severe limitations on processing power and bandwidth of DTN nodes, all of
the above security is optional with respect to neighbor discovery. In many deployments, the costs
may simply outweigh the benefits.

6 Conclusion

The decision to use BA over static configuration in certain environments depends on the environ-
ment; however, there are virtually no situations where static configuration of nodes will be more
robust, reliable, and scalable than BA discovery. Furthermore, the information gathered in the ad-
vertised capabilities can enable future routing decisions and dynamic routing algorithms. As some

16

capabilities can’t be known at runtime, this is inherently of more utility than static configuration.

Whether the increased link overhead is acceptable is also based on the environment in which it’s
used. On well-connected Earth nodes, it makes sense to use BA discovery. In sensor environ-
ments, it depends on the devices: if links are very stable and communication is low and in pre-
dictable windows, it might make sense to turn off the receivers to save power and disable BA
discovery. In most environments, however, it makes sense to simply configure a new convergence
layer domain-specific protocol which makes use of the link’s inherent characteristics to provide
maximum flexibility.

In conclusion, based on our experimental results, BA discovery makes sense in many to most
DTN deployment areas. We see no reason that an appropriate domain-specific protocol couldn’t
be quickly designed and implemented for all but the smallest but most stable convergence layers
with no unforeseen disconnections. The currently implemented UDP multicast / UDP unicast /
TCP unicast beacon system is usable in testing and on well-connected terrestrial networks.

Acknowledgments

Funding and peer review was graciously provided by the Delay/Disruption-Tolerant Networking
Research Group, the NASA Earth Science Technology Office, the Internetworking Research Group
at Ohio University, and Verizon Federal Network Systems.

Reference Documents

Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., and H. Weiss,
”Delay-Tolerant Networking Architecture”, RFC 4838, April 2007.

Scott, K. and S. Burleigh, ”Bundle Protocol Specification”, RFC 5050, November 2007.

Wyllie, J., Eddy, W., Ishac, J., Ivancic, W., and S. Ostermann, ”Automated Bundle Agent Discov-
ery for Delay/Disruption-Tolerant Networking”, draft-wyllie-dtnrg-badisc-01 (work in progress),
November 2007.

Nikander, P., Kempf, J., and E. Nordmark, ”IPv6 Neighbor Discovery (ND) Trust Models and
Threats”, RFC 3756, May 2004.

Ylonen, T. and C. Lonvick, ”The Secure Shell (SSH) Protocol Architecture”, RFC 4251, January
2006.

17

