
Performance Evaluation and Analysis of Delay Tolerant
Networking

Earl Oliver, Hossein Falaki
David R. Cheriton School of Computer Science

University of Waterloo
{eaoliver, mhfalaki}@uwaterloo.ca

ABSTRACT
Wireless opportunistic connections are the primary mecha-
nism for transferring data between disconnected nodes, such
as vehicles, remote sensors, or village kiosks [8, 4, 13] in a
delay tolerant network (DTN). Opportunistic connections
may last from seconds, as in the case of a rapid drive-by, to
several minutes. During this short connection window, it is
important to maximize data transfer between DTN nodes.
We use microbenchmarks to study the wireless transfer per-
formance of the DTN reference implementation, which is the
most widely used DTN implementation today [9]. Existing
DTN deployments utilize low-cost, low-power devices that
tend to have slow CPUs [13]. Based on these characteristics,
we hypothesize about the effect of control parameters on op-
portunistic data transfer. We test our hypotheses through
a series of experiments and show that the principal perfor-
mance bottleneck is the CPU. We also found that the choice
of DTN bundle size affects performance by a factor of up to
60.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Measurement techniques

General Terms: Measurement, Performance, Experimen-
tation

Keywords: Delay Tolerant Networking, Performance, Eval-
uation

1. INTRODUCTION
In recent years delay tolerant networking (DTN) has emerged

as a means to reliably transport data to and from discon-
nected regions of the Internet [10]. Although DTN is de-
signed to support heterogeneous networks and interfaces,
most projects based upon DTN, such as DieselNet [8], SeNDT
[4], and KioskNet [13], are based upon IP and a combination
of wireless and wired links. At the edges of the network, each
project utilizes opportunistic wireless connections to trans-
fer data bundles [12] between mobile vehicle and stationary
throwbox, sensor, or kiosk respectively. Opportunistic con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiEval’07, June 11, 2007, San Juan, Puerto Rico, USA.
Copyright 2007 ACM 978-1-59593-762-9/07/0006 ...$5.00.

nections may last from seconds, in the case of a rapid drive-
by, to several minutes. For large scale deployments, such
as in KioskNet, where potentially gigabytes of data can be
transferred between buses and rural kiosks, maximizing data
transfer during opportunistic connections is important.

In this paper we examine the behaviour of the DTN ref-
erence implementation (DRI) by the IRTF DTNRG [1] on
low-power devices. Although several other DTN implemen-
tations have been developed, we chose to examine the refer-
ence implementation because, to the best of our knowledge,
it is the most widely used. We hypothesize how various
parameters and resources affect the performance of this im-
plementation. Our hypotheses are then tested with several
experiments that capture operating system state as well as
the DRI data transfer statistics. From our evaluation, we
validate or invalidate elements of our hypotheses and suggest
possible improvements to the DRI. Throughout this analy-
sis, we are primarily interested in the throughput between
DRI nodes during opportunistic connections. For the re-
mainder of this paper we define this quantity as a measure
of the DRI performance.

Existing evaluations of the DRI have focused on routing
and the DRI’s superiority over existing store-and-forward ar-
chitectures such as SMTP [9]. To the best of our knowledge,
this is the first paper focusing on the low-level performance
of the DRI. The main contributions of this paper are:

• Analysis of the most widely used reference implemen-
tation for disconnection tolerant network architectures

• Discovery of the bottlenecks to DRI performance on
low-power devices

• Demonstration of the significant effect of bundle size
on DRI performance

• Development of a methodology for evaluating the per-
formance of other mobile systems

This paper begins with a brief overview of the DRI archi-
tecture. We then outline the details of our test platform.
Section 4 presents our experimental hypotheses. Section
5 outlines our method to evaluate our hypotheses and de-
scribes our results. This section also highlights areas we
believe performance improvements can be made. In section
6 we conclude and outline future work.

2. DRI ARCHITECTURE
In [9], Demmer describes the major components of the

DRI. Convergence layers are the interfaces between the DRI

1

and different network protocol suites. Persistent storage

holds bundles during store-and-forward operations. Berke-
ley DB is currently the most widely used application for per-
sistent storage. The router module is responsible for mak-
ing routing decisions, which are performed by the forwarder

module.

3. DEVICE CHARACTERISTICS
In this section we introduce the devices used for our ex-

periments. This configuration is currently used in [13]. We
expect other deployments to use similar low-power devices
to save cost and power. We also investigate disk I/O and
network limitations of our test bed through a series of mi-
crobenchmarks.

3.1 Test Bed Hardware and Operating System
Our test bed consists of four low-power, low-cost comput-

ers from Soekris Engineering (net4801). These computers
have a single 266 MHz processor and 256 MB of integrated
SDRAM. The test bed setup is illustrated in figure 1. We in-
stalled Atheros 802.11abg wireless cards on beta and gamma

nodes. These cards were set to use 802.11a at a frequency
of 5.825 GHz (channel 165) in ad-hoc mode. During our
experiments no other 802.11a devices were within range of
our lab on this channel.

We installed Stable Debian on all the test bed nodes and
upgraded the kernel to Linux beta 2.6.8-3-386. We used the
DRI CVS head as of February 22, 2007. GCC version 3.3.5-
3 was used on these machines to compile the DRI and other
benchmarking tools.

3.2 Microbenchmarks
We conducted a series of microbenchmarks to determine

the performance limitations of the network and disk sub-
systems. Parameters such as CPU clock rate and RAM
read/write delays are fixed and known, but the actual disk
I/O throughput and network interface throughput depend
on several other parameters. Disk I/O latency may vary for
different operating system, file system, and virtual mem-
ory system combinations. Wireless throughput and delays
are also affected by parameters such as environmental noise.
The results of the microbenchmarks allow us to generalize
our evaluation to other hardware platforms.

3.2.1 Disk I/O Microbenchmarks
Our DRI nodes use the MK4032GAX Toshiba 40 GB 2.5”

notebook hard drives with ATA-6 interfaces. The rotational
speed of these disks is 5,400 RPM. They have an 8 MB
buffer and their transfer rate is stated to be 100 MB/s [7].

Figure 1: Test bed configuration

read read (cache hit) write
Scattered 0.6 MB/s 13.0 MB/s 4.0 MB/s

Contiguous 12.0 MB/s - 10.3 MB/s

Table 1: Average values of I/O microbenchmark re-
sults for hard disk

read read (cache hit) write
Scattered 1.6 MB/s 13.0 MB/s 2.8 MB/s

Contiguous 4.0 MB/s - 2.8 MB/s

Table 2: Average values of I/O microbenchmark re-
sults for Compact Flash

We measured disk I/O throughput in two cases: scattered
data and contiguous data. For the scattered data measure-
ments we wrote a benchmark program that reads/writes
varying amount of random data from/to 1000 to 4000 files
and measures the effective throughput. Contiguous data
throughput was measured by using the same program but
reading/writing 1 GB of data from/to a single file. We also
measured the disk I/O throughput for contiguous read/write
without file system intervention by using the standard Unix
dd command. We repeated these experiments using 4 GB
Lexar Professional Compact Flash as an alternative storage
device. These devices are stated to sustain a minimum write
speed of 19.4 MB/s [3].

The disk I/O microbenchmark results are presented in
Table 1. As a side note, we found in the scattered disk I/O
microbenchmarks that if the total data size is less than 1.5
MB, the effective throughput is dominated by the number
of files and is not affected by the size of files.

Compact Flash I/O microbenchmark results are presented
in Table 2. Compact Flash I/O delays were observed to be
highly variable.

3.2.2 Network Microbenchmarks
The goal of the network microbenchmarks is to measure

maximum wireless throughput between nodes beta and gamma.
We conduct two microbenchmarks with custom tools. The
first measures throughput between a TCP client on beta

sending data to a TCP server on gamma. In the second

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Data transferred (MB)

1 MB chunks
100 KB chunks

1 KB chunks

Figure 2: Network throughput vs. data size when
disk is not involved.

2

microbenchmark, a TCP client on beta reads data from a
file and sends them to gamma where the TCP server writes
the received data to another file. Each test is conducted
four times with different data block sizes (1 KB, 10 KB, 100
KB, 1 MB).

Figure 2 illustrates the throughput vs. transferred data
size in the first network microbenchmark. The throughput
increases as the data block size increases. The maximum av-
erage throughput (with data block size of 1 MB) is 4.0 MB/s
and the minimum average throughput (with data blocks of
1 KB) is 3.2 MB/s. The saw-tooth pattern formed when
using 1 MB chunks is due to high fixed system call costs
relative to linear ”data touching” costs [11]. Using 1 MB
chunks to transfer i MB of data causes ⌈ i

1MB
⌉ socket write

calls into the kernel. For all data points in each tooth, the
number of socket write calls is constant while the amount
of data transferred increases. At the peak of each tooth,
the cost of an additional system call is significantly higher
than the throughput gained by transferring an additional 0.1
MB. Figure 3 illustrates the throughput vs. transferred data
size in the second network microbenchmark. In this experi-
ment throughput is highly variable. The maximum average
throughput (with data block size of 1 MB) is 3.2 MB/s and
the minimum average throughput (with data blocks of 1
KB) is 1.9 MB/s. This figure also shows the saw-tooth pat-
tern. During both network microbenchmarks the CPU was
saturated.

4. HYPOTHESES
Based on our microbenchmarks, we hypothesize about

the effect of system resources and parameters on the per-
formance of the DRI.

4.1 Resources
We begin by observing the relationship between disk I/O

throughput and network throughput. In the best case, disk
I/O (13 MB/s for cached read) exceeds maximum network
I/O throughput (6.15 MB/s) by 111%. For larger amounts
of data, the gap between disk I/O (cached read) and average
network throughput (3.4 MB/s) increases to approximately
282%. When performing contiguous disk I/O or reading
cached data the disk significantly outperforms the network.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Data transferred (MB)

1 MB chunks
100 KB chunks

1 KB chunks

Figure 3: Network throughput vs. data size with
disk involvement.

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 0 5 10 15 20 25 30 35 40 45 50

D
el

ay
 (

m
s)

File size (KB)

Hard Disk Write
Hard Disk Read

Figure 4: Delay writing 15 MB of data using differ-
ent file sizes.

We believe this is because the CPU is unable to handle in-
terrupts from the wireless NIC. Under these I/O conditions
the CPU is the primary bottleneck.

To be highly tolerant to power and hardware failures, the
DRI writes received bundles to disk and reads bundles from
disk when sending data to other DRI nodes. Frequent read-
ing and writing of bundles within the DRI causes scattered
disk I/O. In the worst case, when reading scattered non-
cached data (0.6 MB/s), the average network throughput
exceeds the disk throughput (3.4 MB/s) by 466%. Scat-
tered I/O reduces the load on the CPU and causes the disk
to become the primary bottleneck.

We hypothesize that the DRI’s dependency on the disk
and frequent scattered disk access make the disk the pri-
mary DRI performance bottleneck. Due to the poor write
performance of Compact Flash, we expect better perfor-
mance using hard disk than using solid state storage.

Modern OSs have virtual memory systems that use disk
storage in conjunction with physical memory to provide vir-
tually unlimited memory to user applications. The draw-
back to virtual memory is slower memory access when a
page fault occurs. Page faults happen more often when a
program tries to access dispersed parts of its address space.
Poor disk I/O would magnify the cost of swapping data in
and out of memory; however, the level of disk I/O due to
virtual memory is small compared to bundle read/write disk
I/O. We believe that page faults due to inadequate memory
do not limit the performance of the DRI.

4.2 Parameters
Our network microbenchmarks prove that applications,

including the DRI, cannot take advantage of the wireless
data rates supported by the Atheros card. In both net-
work microbenchmarks, maximum average throughput was
approximately 3 MB/s when transferring large amounts of
data. We hypothesize that the performance of the DRI will
peak at a wireless data rate of at most 24 Mb/s.

In Figure 4 we observe that disk I/O delay is minimized
when using larger files. In the DRI, bundle size is an application-
defined parameter. Using larger bundles reduces aggregate
bundle overhead when transferring a fixed amount of data.
We believe that DRI performance improves with increasing
bundle size.

3

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 10 20 30 40 50 60

C
P

U
 u

sa
g
e

(p
er

ce
n
t)

Time (seconds)

User + Kernel + I/O
User

Kernel
I/O

Figure 5: CPU utilization during an opportunistic
connection.

Parallelism is often used to increase performance of disk
bound applications. When one thread is blocked on disk
I/O, other threads may utilize the CPU. Given our belief
that the DRI is disk bound, we hypothesize that perfor-
mance can be improved by further parallelism.

5. EVALUATION AND ANALYSIS
In this section we outline the method for verifying our

parameter and resource hypotheses and present our results.
The test scripts used to perform these benchmarks and our
data can be downloaded from [6].

Throughout the following experiments we measure system
statistics using the System Activity Reporter (SAR) [5]. We
are particularly interested in: detailed CPU usage (i.e. user,
system and I/O waiting time) and virtual memory activity.
A combination of this information and the experiment re-
sults help us verify our hypotheses in the following subsec-
tions.

5.1 CPU
Figure 5 illustrates user, kernel, I/O, and total CPU usage

of a DRI node during a 20 second opportunistic connection
using a 50 KB bundle size. During the connection window
the CPU is used at capacity (75% user and 25% kernel).
When the contact is lost I/O activity increases up to 24%.
The final increase in CPU activity due to I/O corresponds
to a page-out storm between 30 and 35 second into the test.
This I/O activity is illustrated in Figure 6. We observed sim-
ilar CPU behaviour when evaluating different bundle sizes.

We conclude that the CPU, contrary to our expectations,
is the first order performance bottleneck for the DRI on
the chosen hardware. The throughput of the network mi-
crobenchmark, which involves the disk (3.0 MB/s), is more
than three times better than the best performance of the
DRI (0.87 MB/s).

5.2 Bundle Size
To evaluate the effect of bundle size on DRI performance,

we measure data transfer during a simulated opportunistic
wireless connection between nodes beta and gamma. We
perform this test using bundle sizes between 2 to 50 KB1 in

150 KB is the maximum in memory bundle size supported

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

N
u
m

b
er

 o
f

p
ag

es

Time (seconds)

Sender page out
Receiver page out

Figure 6: Virtual memory activity during an oppor-
tunistic connection.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Bundle size (KB)

Dual Daemon, Hard Disk
Hard Disk

Compact Flash

Figure 7: DRI throughput during an opportunis-
tic connection vs. bundle size using the hard disk,
Compact Flash, and two DRI daemons.

2 KB intervals. The test begins by switching the wireless
frequency on beta to 5.18 GHz (channel 36) to disable the
link to gamma. We then enqueue 15 MB worth of data at
alpha for delivery to delta. Bundles enqueued at alpha are
transferred rapidly across the wired link and are enqueued
at beta. We chose to transfer data between alpha and delta

to separate application level overhead from our system eval-
uation. A delivery receipt was requested by alpha for each
bundle delivered to delta. Although small (54 byte) bundles
add extra transfer overhead and reduce overall throughput,
they are common in DTN deployments to acknowledge bun-
dle delivery.

After enqueueing bundles, we initiate an opportunistic
connection by switching the wireless frequency on beta back
to 5.825 GHz. Each DRI node is configured to retry its
connection to a lost peer every second. After switching
beta back to a common channel, its link with gamma is
quickly restored and bundles transfer between nodes. After
a fixed connection window of 20 seconds we switch beta’s
wireless frequency back to 5.18 GHz to break the connec-

by the DRI API.

4

Compact Flash Hard Disk Ratio
Small bundles 0.09 MB/s 0.10 MB/s 90%
Large bundles 0.42 MB/s 0.67 MB/s 62%

Table 3: Comparison of DRI performance using
hard disk and Compact Flash

tion to gamma. A 20 second connection window is chosen
so that data would remain in beta’s bundle queue when the
test is over. We then observe the goodput during the op-
portunistic connection to be the number of bundles removed
from the queue times the bundle size divided by 20 seconds.

In our standard test configuration, (one DRI daemon pro-
cess, using hard disk and 256 MB of memory), workloads
consisting of 50 KB bundles transferred on average 23.8
times more data than workloads consisting of 2 KB bun-
dles. Figure 7 illustrates these results. We saw an identical
effect of bundle size when running two DRI daemons in par-
allel. Figure 7 also includes the effect of solid state storage
which is discussed in 5.4.

Given that the CPU is fully utilized in each case, we at-
tribute performance gains using large bundles to reduced
per-byte bundle overhead and minimized I/O delays as ob-
served in our microbenchmarks.

These results are limited due to evaluating only bundle
sizes supported by the DRI in-memory API. In future work
we will explore the complex trade-off between DRI perfor-
mance and power efficiency. Given that larger bundles can-
not use the DRI in-memory API, they incur the cost of ad-
ditional disk reads/writes. Finding the optimal bundle size
will be a point of interest.

5.3 Memory
To verify that the CPU is the primary bottleneck on de-

vices with limited memory we used GRUB to reconfigure
the Linux kernel on the test bed machines to use a frac-
tion of the available physical memory (128 MB and 64 MB).
For each amount of memory we re-run the tests in 5.2. We
monitor paging activity of the OS during these tests.

Figure 8 illustrates the DRI throughput during a 20 sec-
ond opportunistic connection vs. bundle size using 256 MB,
128 MB and 64 MB of physical memory. The average through-
put of the tests are statistically indistinguishable. The num-
ber of page-ins during an opportunistic connection is neg-
ligible. These observations prove that CPU is by far the
primary bottleneck of DRI performance.

5.4 Disk
To assess the effect of disk access delays during an op-

portunistic connection we re-run the previous tests using
Compact Flash cards instead of hard disks. Based on the
microbenchmark results the Compact Flash write through-
put for scattered data is 70% and for contiguous data is
27% of hard disk write throughput and its contiguous read
throughput is 33% of the hard disk. Table 3 compares the
DRI throughput using Compact Flash and hard disk. These
results confirm our expectation that the DRI would perform
better using hard disk than using solid state storage. With
Compact Flash we found that 48 KB bundles yield the high-
est throughput. Using 48 KB bundles transferred on aver-
age 59.2 times more data than our worst result using 2 KB
bundles. Although Compact Flash offers poor performance

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Bundle size (KB)

256 MB RAM
128 MB RAM
64 MB RAM

Figure 8: DRI throughput vs. bundle size for dif-
ferent physical memory capacities

relative to hard disk, it may be more practical in power
constrained deployments.

We observe three times more disk write activity on the
receiving side of the connection. An important performance
optimization for the DRI (at the cost of decreasing reliabil-
ity) would be to delay bundle writes to permanent storage
until after an opportunistic connection.

5.5 Wireless Data Rate
We assess the effect of data rate by repeating the bundle

size experiment in 5.2 using different wireless data rates.
The supported data rates of our Atheros wireless cards are:
6, 9, 12, 18, 24, 36, 48 and 54 Mb/s. For each data rate test,
we hold the bundle sized fixed to 50 KB and use the same
15 MB workload over the same duration.

The results of the wireless data rate tests prove our hy-
pothesis that the performance of the DRI would peak using
a wireless data rate of at most 24 Mb/s. The maximum
throughput of the network microbenchmark using disk was
approximately 3 MB/s (see Figure 3). However, the perfor-
mance of the DRI peaked at a wireless data rate of 12 Mb/s.
At 12 Mb/s the DRI transferred approximately 14.8 MB of
data from beta to gamma during a 20 second window. Data
transfer for data rates greater than 12 Mb/s deviate from
14.8 MB by at most 0.6%.

As a side note, in environments with power constraints,
limiting the data rate to 12 Mb/s could have a significant
positive impact on the uptime of the DRI node due to power
savings. We plan to explore the performance of DRI with
respect to power consumption in future work.

5.6 Parallelism
To study if the degree of thread parallelization is ade-

quate, we run parallel instances of the DRI daemon process.
We configure each node on the test bed to run one or two
DRI daemons. The DRI configuration system made it easy
to separate processes; however, the DRI API needed to be
modified to communicate with applications over different
TCP ports. We then re-run the previous bundle size test
using dual DRI daemons.

The effect of parallelism varies for different bundle sizes.
The most significant gain in performance takes place with

5

bundles greater than 24 KB in size. Despite the fact that
the DRI is CPU bound, we gain approximately 16% in per-
formance by using two DRI daemons when bundle sizes are
greater than 24 KB. After identifying CPU as the primary
bottleneck, we did not expect a performance gain by using
two daemons. We used OProfile [2] to trace the execution
of the DRI while transferring a 15 MB workload consisting
of 50 KB bundles during a 20 second connection window for
both single and dual daemons. In both tests, the DRI dae-
mon(s) consumed approximately equal portions of the CPU;
however, in the dual daemon case 8.28% less time was spent
acquiring and releasing locks. Most of this savings was due
to less time wasted on spinlocks. Using dual daemons re-
duced the amount of CPU time that either daemon could
spend trying to acquire the spinlock before CPU preemp-
tion.

6. CONCLUSIONS AND FUTURE WORK
To evaluate the performance of the DRI, we studied the

physical characteristics of low-cost, low-power hardware used
in existing DTN deployments. We presented our hypotheses
about DRI performance based on these characteristics and
our knowledge of the DRI. We evaluate the hypotheses af-
fecting DRI performance during opportunistic connections
using a series of experiments.

Contrary to our expectations, we found that the CPU
is the primary bottleneck inhibiting the performance of the
DRI; however, performance can be improved by further par-
allelization. The use of spinlocks is the largest contributor to
these contradictory results. We found that an application’s
choice of bundle size can affect performance by a factor of
24 times, and as high as 60 times when using solid state
storage. We also identified the effect of storage delays on
DRI performance.

We expect to see similar results in other low-powered,
limited CPU devices, such as cell phones and smart phones.
These results may be different when the DRI is run with
a faster CPU(s) and with faster disks. However, we believe
that our methodology can be applied to other hardware con-
figurations, and to evaluate the performance of other mobile
systems that utilize opportunistic wireless connections.

Our results lead to the following recommendations:

• DRI application developers should use the largest pos-
sible bundle size when using the DRI in-memory API.

• The DRI should be restructured to increase parallelism.

• When deploying the DRI, invest more in the CPU than
faster storage and increased memory.

Our results suggest several potential improvements to DTN.
In practice, sending a large number of bundles with delivery
receipts (currently 54 bytes in size) enabled will reduce good-
put on subsequent opportunistic connections. In this cases,
we believe that performance would be greatly improved by
chaining acknowledgement bundles into a single large bun-
dle. We plan to explore this change to the DTN bundle
protocol [12] in future work. While our experiments show
that a 50 KB bundle size maximizes goodput, we have not
explored bundle sizes greater than this size. We plan to
modify the DRI in-memory API to support larger bundles.
Given that the DRI is able to fragment bundles, we are in-
terested in dynamic methods for finding the optimal bundle
size for a given hardware configuration.

We also plan to explore the relationship between DRI
performance and power consumption. For example, we ob-
served that an increase of wireless data rate above 12 Mb/s
offered no performance gain. We are interested in finding
equivalent power optimizations and potential trade-offs be-
tween performance and power consumption.

7. ACKNOWLEDGEMENTS
We would like to acknowledge our supervisor Prof. Ke-

shav, Shimin Guo, Aaditeshwar Seth, Prof. Brecht and
Nilam Kaushik for their assistance and consultation through-
out this project.

This research was supported by grants from the National
Science and Engineering Council of Canada, the Canada Re-
search Chair Program, Nortel Networks, Intel Corporation,
and Sprint Corporation.

8. REFERENCES
[1] Delay tolerant networking research group. Available from:

http://dtnrg.org.

[2] Oprofile - a system profiler for linux. Available from:
http://oprofile.sourceforge.net/news/.

[3] Lexar professional compactflash memory cards, 2007. Available
from: http://www.lexar.com/digfilm/cf pro.html.

[4] Sensor networking with delay tolerance, 2007. Available from:
https://down.dsg.cs.tcd.ie/sendt/.

[5] Sysstat, 2007. Available from:
http://perso.orange.fr/sebastien.godard/.

[6] Test scripts and data set, 2007. Available from:
http://blizzard.cs.uwaterloo.ca/tetherless/images/5/55/
Dtn perf eval oliver falaki.tar.gz.

[7] Toshiba hard drives and optical drives, 2007. Available from:
http://sdd.toshiba.com/.

[8] Umass dieselnet, 2007. Available from: http:
//prisms.cs.umass.edu/dome/index.php?page=umassdieselnet.

[9] Michael Demmer, Eric Brewer, Kevin Fall, Sushant Jain,
Melissa Ho, and Robin Patra. Implementing delay-tolerant
networking, 2004. Available from:
http://www.dtnrg.org/papers/demmer-irb-tr-04-020.pdf.

[10] Kevin Fall. A delay-tolerant network architecture for
challenged internets. In SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 27–34,
New York, NY, USA, 2003. ACM Press.

[11] Jonathan Kay and Joseph Pasquale. The importance of
non-data touching processing overheads in tcp/ip. In
SIGCOMM ’93: Conference proceedings on Communications
architectures, protocols and applications, pages 259–268, New
York, NY, USA, 1993. ACM Press.

[12] K. Scott and S. Burleigh. Bundle protocol specification. Work
in progress (Internet-Draft draft-irtf-dtnrg-bundle-spec),
December 2006. Available from: http://www.ietf.org/
internet-drafts/draft-irtf-dtnrg-bundle-spec-08.txt.

[13] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav.
Low-cost communication for rural internet kiosks using
mechanical backhaul. In MobiCom ’06: Proceedings of the
12th annual international conference on Mobile computing
and networking, pages 334–345, New York, NY, USA, 2006.
ACM Press.

6

