
Some Design Issues for

High-speed Networks

Van Jacobson
van@ee.lbl.gov

Lawrence Berkeley Laboratory
Berkeley, CA 94720

Networkshop ’93
Melbourne, Australia
30 November, 1993

Outline:

� Can the Internet protocols deal with high speed?

� Do we need any additions to the architecture?

vj–fast networks–2

Can the Internet protocols deal with high speed?

Yes.

vj–fast networks–3

How do we know this?

We’ve done a ground-up re-implementation of the
BSD Unix kernel network architecture based on new
understanding gained during five years of measuring
and tuning the old code.

The new code is slightly faster than the old (one to
two orders of magnitude).

Was going to be released as part of 4.4BSD. Demise
of CSRG and AT&T suit made that impossible. Trying
to work out how to finish code and do distribution.

vj–fast networks–4

How fast do things go?

Measurements (made with external logic analyzer) of
current prototype running on a Sparcstation-2 show:

� The total cost for IP to forward a packet is 37
instructions and 7 memory references
(5 loads and 2 stores).

� The total cost to process the protocol in a TCP
datagram is

�
60 instructions and 22 memory

references.

� For any reasonable datagram size, TCP/IP runs
application-to-application at the speed of main
memory.

� Poor performance is almost always the fault of
baroque, complex, poorly integrated (i.e., typi-
cal) network interface hardware.

vj–fast networks–5

What’s Different?

Prototype is almost the same as BSD Net-2 with a
few minor changes:

� mbufs are gone.

� sockbufs are gone.

� netipl is gone.

� sosend / soreceive are gone.

� inpcb’s are gone.

� pr usrreq is gone.

� ip output, and most of the protocol layering, are gone.

� . . .

vj–fast networks–6

What was wrong with old code?

Short answer: Layering.

� Old code’s strict layering model caused bad
buffering decisions which generated lots of extra
memory traffic. New code touches any piece of
data exactly once.

� Old code’s layering model lost perfomance due
to lack of parallelism. New code dumps layering
and maximizes parallelism.

vj–fast networks–7

Layering is bad?

Dave Clark at MIT (and many others) have been say-
ing for the past decade that layered models are a
great way to design protocols but a lousy way to im-
plement them. All our measurements support this
theory. So . . .

Application level send and receive go to protocol spe-
cific routines, not generic routines, that know what
packets look like and understand protocol’s flow con-
trol and reliability policy.

These routines call output driver, not generic alloca-
tor, to get packet buffers.

They build and ship one packet at a time to maximize
parallelism.

They cache everything that might be useful later and
can do most of their packet building with a single
bcopy.

vj–fast networks–8

packet ID

version header
length type of service total length

frag offsetD
F

M
F

time to live protocol header checksum

Source Address

Destination Address

TCP/IP Packet Changes

(data packets)

Source port Destination port

Sequence Number

Acknowledgement Number

Checksum Urgent Pointer

WindowFlagsData
Offset

Ethernet Destination Address

Ethernet Source Address

Ethernet Packet Type

vj–fast networks–9

But what about the checksum?

If you architect things right, it costs nothing.

Copy and Checksum Timings
(all times in ns/byte)

bcopy cksum
Machine bcopy & cksum cost

Sun 3/60 133 206 58%

HP9000/370 (68) 122 (97) 144 (43) 18%

Sparcstation-1 (94) 164 (108) 177 (15) 8%

Sparcstation-2 (42) 109 (49) 109 (15) 0%

HP9000/720 (20) 54 (20) 54 (0) 0%

(numbers in paren are for all data in cache)

vj–fast networks–10

Where does the time go?

Say we’re receiving back-to-back 4KB FDDI
packets (one packet every 330 � s).

On a Sparcstation-2 (40MHz clock or 25ns/instr.):

instr � s

TCP + IP + ARP 100 3

Interrupt entry/exit 600 25

DMA 4KB into memory � 164

copy 4KB to application 1000 446

vj–fast networks–11

Architectural Addition:

As links get fatter we (can) get much wider range of
applications and larger mix of users simultaneously
filling pipe.

We need better control of how bandwidth is portioned
out.

vj–fast networks–12

Need to support different qualities of service (real-
time vs. interactive vs. bulk data)

a b

c d

e f

packet video

nntp

te
ln

et

vj–fast networks–13

Need to accommodate ‘policy’ constraints. E.g.,
DOE & DARPA fund half of US–UK link. Each wants
half if link loaded, wants excess if other guy isn’t using
all his half. DOE also needs to divide link between
DECNet & IP protocols using similar rules.

NASA vs.
non-NASA

DOE

Decnet

TCP/IP

DARPA

1
2

1
2

1
2

1
2

vj–fast networks–14

Combining policy with QOS suggests that traffic must
satisfy a hierarchy of constraints:

Link

DOE

Interactive Bulk data

Priority/Allocation

NSF

Realtime

Interactive Bulk dataRealtime

IP Decnet

60% 40%

30%

1 / 30% 2 / 10% 3 / 20%

1 / 10% 2 / 10% 3 / 10%

2 / 10%

100%

vj–fast networks–15

Constraints (classes) may need

to be different at different points

in the network . . .

v1

v2

class v1: 64kbs, . . .
class v2: 64kbs, . . .

. . .

Class Table

class Σv: 320kbs, . . .

. . .

Class Table

Conformance
Checking

Burst
Smoothing

vj–fast networks–16

. . . and one type of traffic may

have to satisfy multiple constraints

at a single point in the network.

v1

v2

class link: 1.5mbs
 class DOE: 750kbs, . . .
 class DOEvideo: 256kbs, . . .
 . . .
 class NASA: 750kbs, . . .
 class NASAvideo: 256kbs, . . .
 . . .

Class Table

DOE

NASA

vj–fast networks–17

Other ground rules:

� Has to work in heterogeneous environment.

� Should not require multi-lateral agreement.

� Should not require detailed accounting and set-
tlement.

� Needs to evolve gracefully.

vj–fast networks–18

A major lesson from IP is that per-packet processing
(forwarding) should be separated from ‘global coor-
dination’ (route exchange and route computation).

� helps performance [routes don’t change per-
packet]

� allows graceful evolution [packet forwarding was
well understood in 1978; in 1990 we started to
dimly understand routing].

vj–fast networks–20

This suggests that link management software should
mirror IP’s routing/forwarding split:

‘B
ac

kg
ro

un
d’

‘P
er

-p
ac

ke
t’

Forwarder

Routing
Agent

Link Driver

Resource
Agent

routing
table

class
table

vj–fast networks–20

There are at least two proposals on how to add con-
trol of link sharing to Internet:

� Clark-Shenker-Zhang

� Class Based Queuing (Jacobson-Floyd)

‘Forwarding’ component of each is well developed
and both have intial implementations with some test-
ing. IETF process for a shootout has begun . . .

vj–fast networks–21

