
NSYNC
Network Synchronization for Low-latency 

Peer-to-Peer Streaming Overlay Construction

Shudong Jin

Case Western Reserve University

NEONet Workshop, March 1, 2006



-2-

Peer-to-Peer Streaming

Peer-to-peer systems versus client/server systems
Eliminate the performance bottleneck problem
Eliminate the single point-of-failures

Media streaming: a media stream is played while being received.
Video-on-demand (stored media such as movies)
Conference broadcast, live shows, sports events
Interactive games, real-time conferencing

How to construct an overlay network for peer-to-peer streaming? 
High-quality media streams
Low peer-perceived latency



-3-

Problem One: Long Latency

Peers need to buffer a portion of the media stream
Peer B receives media data from peer A. 
A long latency may be found unnecessary later

If this latency is not trimmed, the average latency of the system 
could be unbounded (early peers leave and new peers join) 

Find peers with low-latency as parent, but …



-4-

Problem Two: Inefficient Overlay

There is a strict partial ordering of the peers
It doesn’t make sense for an earlier peer to receive media data from 
a later peer

This partial ordering limits the space for overlay network 
construction (and potentially results in low quality)

B

A

S

long delaysshort delay



-5-

NSYNC Objectives

NSYNC: Network Synchronization for peer-to-peer streaming 
overlay construction

NSYNC is
A set of primitives to help construct and optimize streaming overlay
A method that can be used in other peer-to-peer streaming systems

NSYNC is not
A peer-to-peer system with its own overlay network construction



-6-

NSYNC Ideas

The principles
To capitalize on the flexibilities of streaming applications
To exploit temporal locality and geographical proximity

Flexibilities of streaming applications
Increase/decrease the speed of playing a media stream

Temporal and geographical
Peers that are geographically close to each other can be temporally 
close too.
If not, we can make that happen!



-7-

NSYNC Assumptions



-8-

NSYNC Primitives

Provided primitives?
increase the speed of playing a media ((1+∆) times the normal rate) 
decrease the speed of playing a media
increase the speed of receiving a media
decrease the speed of receiving a media?

Combined in use with other operations
switch to another peer as a parent
reverse client/server roles



-9-

NSYNC for Peer Catching

Scenarios

Peer B receives a media stream from peer A. Peer B finds the lag
behind A is unnecessarily large. For example,

The path is less congested, and has few delay jitters
A’s other three children left

Peer B’s previous parent left and B locates A as the new parent who 
is well ahead of B.

Let us use NSYNC to construct a catching process



-10-

Catching Process

With normal receiving rate

With (1+∆) times normal receiving rate



-11-

NSYNC for Peer Reversal

Scenarios:

Initially peer B receives a media stream from A, who receives the 
media stream from S. They find it is better for B to receive it from S 
and relay it to A.

Let us use NSYNC to construct a reversal process for A and B



-12-

Reversal Process

What if A didn’t buffer a large 
enough portion of the media 
stream? Its buffer could be 
drained during the switching.

Solution: A plays more slowly 
before the reversal process.



-13-

Open Questions: Implementation

What primitives should be provided in NSYNC?

What meaningful operations (and processes) can be constructed 
using the primitives?

Who, when, and how to decide what processes should be started 
to improve the performance and optimize the network?



-14-

Open Questions: Algorithms

Graph algorithms and scheduling? Examples:
In a directed acyclic graph where T(child)<T(parent), how can we 
schedule a sequence of caching processes to minimize the latency
as quick as possible? Maybe easy.
How can we schedule a sequence of reversal processes to minimize
the average latency of all peers? Assume one peer can be involved 
in one reversal process at one time. Could be very difficult.

Even simple problems become difficult, considering the 
decentralized nature of the networks.



-15-

Open Questions: Deployment

Which peer-to-peer systems really like to have NSYNC? Likely it 
depends on the type of streaming applications

Are there any technical barriers for the deployment of NSYNC? 
For example, some media players may not support a ∆ increase 
of the playing speed.

Are there any non-technical barriers?


